OCTOBER 28, 2021 MODIFIED FOR SR400 PHASE 1 BRIDGE DESIGN-BUILD PROJECT

SS GEOTECHNICAL DATA REPORT

Project No PI# 0001757 Fulton Counties, Georgia

PREPARED FOR: AECOM 1360 Peachtree Street NE, Suite 500 Atlanta, Georgia 30309

AECOM Project 60558412 NOVA Project Number 2018089 - Task Order 5

February 21, 2020 (Revision 1)

February 21, 2020 (Revision 1)

AECOM

1360 Peachtree Street NE, Suite 500 Atlanta, Georgia 30309 This report has been produced for the sole and exclusive use of AECOM, HNTB and the Georgia Department of Transportation. Distribution of this report to others shall be for information purposes only. Use and reliance on this report or any of its contents by others is at their sole risks.

Attention: Scott A. Gero, P.E. - Project Manager BODY OF REPORT REDACTED TO ONLY INCLUDE THE INFORMATION NEEDED FOR THE

Subject: SS Geotechnical Data Report SR400 BRIDGE DESIGN BUILD PROJECT. Project Note: Project Note: Project Note: Project 60558412 – Task Order 5 NOVA Project Number 2018089

Dear Mr. Gero,

NOVA Engineering and Environmental, LLC (NOVA) has completed the Soil Survey (SS) Geotechnical Data Report (GDR) associated with the

project in Fulton Counties, Georgia. This work has been performed under AECOM Task Order 5 of this project (Purchase Order Number 102551) and in general accordance with GDOT requirements as modified based on scoping meetings with HNTB and United Consulting.

An OMAT search for historical BFI reports and a Pavement Evaluation Study was previously completed under Task Order 3 of this project. A Bridge Foundation Investigation (BFI) GDR and submitted under separate cover.

We thank you for the opportunity to assist you with this project and look forward to working with you on future projects.

Sincerely, NOVA Engineering and Environmental LLC

Yude Chen, P.E. Project Engineer

Stephen Willenborg, P.E. Project Manager

Eric K. Tay, P.E

Senior Engineer

Randall L. Bagwell, P. Project Principal

PROFESSIONAL | PRACTICAL | PROVEN 3900 Kennesaw 75 Parkway, Suite 100, Kennesaw, Georgia 30144 t. 770.425.0777 / f. 770.425.1113 / usanova.com

TABLE OF CONTENTS

1.	PROJECT LOCATION / DESCRIPTION	1
2.	SOIL SURVEY INVESTIGATION	2
3.	GENERAL GEOLOGY	2
4.	FIELD EXPLORATION	3
5.	SOIL CLASSIFICATION AND LABORATORY TESTING	4
6.	GEOTECHNICAL EXPLORATION DATA	6
6.1	SUBSURFACE DATA	6
6.2	LABORATORY TEST DATA	15
7.	LIMITATIONS	25

APPENDIX A: FIGURES

Figure 2: General Project Geology Map Figures 3-1 through 3-40: Boring Location Plan

APPENDIX B: SUBSURFACE DATA

APPENDIX C: LABORATORY TEST DATA

Atterberg Limits, Grain Size Analysis, and Moisture Content GDT 810.2 California Bearing Ratio

SPT HAMMERS ENERGY CALIBRATIONS

TTL - 597 CME 45B (SN 307114) TTL - 619 CME 45B (SN 317534) TTL - CME 550X (SN 371903)

IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL-ENGINEERING REPORT

SS GEOTECHNICAL DATA REPORT

PI No. 0001757, Fulton February 21, 2020 (Revision 1)

2. SOIL SURVEY INVESTIGATION

This SS GDR includes the results of geotechnical explorations performed in support of the design of roadway foundations and embankments on the project. The geotechnical explorations consisted of conducting Standard Penetration Test (SPT) borings for anticipated fill areas and auger borings in anticipated cut areas within the proposed SR 400 widening footprint, depending on accessibility. NB borings are those conducted for the northbound lanes and SB borings are those conducted for the southbound lanes. SPT borings were generally drilled to approximately 1 to 1.5 times the height of the anticipated new fill or a minimum of 5 feet unless shallow refusal was encountered. Auger only borings were generally drilled to approximately 5 feet deeper than the anticipated cut and/or ditch depths unless shallow refusal was encountered. The cut and fill depths were estimated based on available drawings provided and/or visual observations of the surrounding topography relative to existing roadway finished grades. The soil survey explorations were generally conducted along the SR 400 corridor ; additional details where test (SPT and Auger) borings were conducted are presented in Section 4 of this report.

3. <u>GENERAL GEOLOGY</u>

The site is located in the Piedmont Geologic Region, a broad northeasterly trending province underlain by crystalline rocks up to 600 million years old. The Piedmont Region is bounded by the Blue Ridge Range of the Appalachian Mountains to the northwest, and by the leading edge of Coastal Plain sediments, commonly referred to as the "Fall Line" to the southeast. Numerous episodes of crystal deformation have produced varying degrees of metamorphism, folding and shearing in the underlying rock. The resulting metamorphic rock types in the project area are predominantly a series of Precambrian-Paleozoic age.

Residual soils in the region are primarily derived from the in-situ parent rock by chemical weathering. The extent of the weathering is influenced by the mineral composition of the rock and defects such as fissures, faults and fractures. The residual profile can generally be divided into three zones:

- An upper zone near the ground surface consisting of red clays and clayey silts which have undergone the most advanced weathering,
- An intermediate zone of less weathered micaceous sandy silts and silty sands, frequently described as "saprolite", whose mineralogy, texture and banded appearance reflects the structure of the original rock, and
- A transitional zone between soil and rock termed partially weathered rock (PWR).

The boundaries between zones of soil, partially weathered rock, and bedrock are erratic and poorly defined. Weathering is often more advanced next to fractures and joints that transmit water, and in mineral bands. Boulders and rock lenses are sometimes encountered within PWR or soil matrix. Consequently, significant fluctuations in depths to materials may occur over short horizontal distances.

The General Project Geology Map is shown as Figure 2 of Appendix A.

4. FIELD EXPLORATION

The number of borings, their locations, and the proposed depth for each boring were determined by reviewing available subsurface exploration data, proposed locations of the new planned bridges/walls and the new roadway plans, profiles, and cross-sections to define the proposed cut and fill heights, in general accordance with GDOT requirements as modified based on scoping meetings with HNTB and United Consulting. Test boring locations were based on proposed SR 400 roadway widening layouts provided by AECOM at the time of the field exploration. Boring locations were placed at regular intervals within the proposed SR 400 widening footprint at select locations. Test boring locations were established in the field by NOVA personnel using a handheld GPS device, and measuring distances from permanent site landmarks. Therefore, the locations noted should be considered approximate. Some boring locations were offset to drill "rig-accessible" areas based on site grades, or located at safe distances from marked utility lines at the time of drilling. Please refer to Figures 3-1 through 3-40 of Appendix A for the approximate boring locations drilled. The proposed SR 400 construction centerline is included on these figures. Please note that proposed roadway alignment layout, configurations, or other information may have changed after the field exploration was completed.

Utilities at the proposed boring locations were located by calling Georgia 811 prior to completing the test borings. GDOT Intelligent Transportation System (ITS) buried fiber optics cables were not located by Georgia 811. NOVA coordinated with the GDOT ITS Department and were provided pdf drawings of the Advanced Traffic Management System (ATMS) Plans for the project corridor. NOVA's field engineers met with GDOT ITS Supervisor and personnel from the GDOT Traffic Management Center (TMC) on site at several locations to review fiber optic line plans. Some of the boring locations required Private Utility Locator services to locate utilities. Hand clearing/dozer clearing was required to access some of the boring locations.

Our drilling subcontractor, TTL, performed all test borings under the supervision of Accura Engineering's field engineer. Borings were drilled with All-Terrain Vehicles (ATV) or truck mounted drill-rigs equipped with hollow-stem continuous flight augers. The SPT N-values were obtained using automatic hammers. Calibration information for the SPT hammers utilized on this project are included as Attachments to this report. The SPTs were conducted using a standard 1.4-inch I.D., 2.0-inch O.D., split-tube sampler per ASTM D1586 and were performed at depth intervals in general accordance with GDOT OMAT guidelines. Representative portions

of the soil samples, obtained from the sampler, were placed in air-tight glass jars and transported to our laboratory for further evaluation and testing.

Auger refusal occurs when very hard or very dense material, frequently boulders or the upper surface of bedrock, is encountered and cannot be penetrated by a power auger. In some cases, when auger refusal was encountered at shallow depths that were not supported by the surficial features, offset borings were performed to confirm auger refusal and/or the presence of partially weathered rock (PWR) at deeper depths. Partially weathered rock (PWR) is a transitional material between soil and the underlying parent rock that is defined as residual materials that exhibit a standard penetration resistance (SPT N-value) exceeding 100 bpf.

It should be noted that the SPT N-value in fill materials may be amplified or result in auger refusal by the presence of graded aggregate base, rock fragments, treated or cemented subgrade materials, or other very hard materials.

The groundwater levels reported on the Test Boring Records represent measurements made at the completion of the test borings or the next day after boring completion, where noted. The soil test borings were backfilled immediately upon completion with soil cuttings and patched with asphalt/concrete as needed.

Coordinates and elevations of the boring locations were surveyed and provided by ACCURA Engineering after the borings were completed. The coordinates and elevations at the borings are based on North American Datum of 1983 (NAD 83 CORS94) and North American Vertical Datum of 1988 (NAVD 88), respectively.

5. SOIL CLASSIFICATION AND LABORATORY TESTING

Soil Classification: Soil classification provides a general guide to the engineering properties of various soil types and enables the engineer to apply past experience to current problems. Samples obtained during drilling operations were classified by an engineer using visual-manual procedures in general accordance with ASTM D2488. The soils were classified according to relative density/consistency (based on SPT N-values), color and composition. Visual classification is confirmed/corrected based on the laboratory test results from representative soil samples obtained from each major soil layer. The final soil classification descriptions included on the "Test Boring Records" are based on using the Unified Soil Classification System in general accordance with ASTM D2487.

Laboratory Testing: The following laboratory testing were performed on representative soil samples collected during the field exploration to assist in the soil classification, and to provide pavement support and soil corrosivity data:

- Grain Size Analysis ASTM D6913
- Moisture Content ASTM D2216

- Atterberg Limits ASTM D4318
- Materials Class Testing GDT 810.2
- California Bearing Ratio ASTM D1883
- Soil Resistivity AASHTO T 288
- pH of Soils ASTM D 4972

Grain Size Analysis: The grain size analysis consists of determining the amounts of various sizes of soil particles using a series of standard sieve openings. The percentage of soil, by weight, passing the individual sieves is then recorded and typically presented in a graphical and/or tabular format. The percentage of fines passing through the No. 200 sieve is generally considered to represent the amount of silt and clay of the tested soil sample. The sieve analysis tests were conducted in general accordance with ASTM D6913 - Standard Test Methods for Particle Size Distribution Using Sieve Analysis.

Moisture Content: In a given soil-air-water matrix, the moisture content is the ratio expressed as a percentage of the weight of water to the weight of the soil particles. These tests were conducted in general accordance with ASTM D2216 - Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.

Atterberg Limits: The Atterberg Limits are different descriptions of the moisture content of fine-grained soils as it transitions between a solid to a liquid-state. For classification purposes the two primary Atterberg Limits used are the Plastic Limit (PL) and the Liquid Limit (LL). The Plasticity Index (PI) is also calculated for soil classification, which is defined as the difference between Liquid Limit and Plastic Limit. The Plastic Limit (PL) is the moisture content at which a soil transitions from a semisolid state to a plastic state. The Liquid Limit (LL) is defined as the moisture content at which a soil transitions from a plastic state to a liquid state. Atterberg Limits tests were performed in general accordance with ASTM D4318 - Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.

California Bearing Ratio: The California Bearing Ratio (CBR) is used to determine the strength of subgrade, subbase, or base course materials, including recycled materials for use in the design of road pavements. The test method is primarily intended for, but not limited to, evaluating the strength of materials having maximum particle sizes less than ³/₄-in. The CBR value obtained in this test can be used to determine the soil support value (SSV) to be used in pavement design. CBR tests were performed in general accordance with ASTM D1883 - Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils.

Materials Class Testing: The GDOT materials class is used for roadway construction per GDOT Section 810.2 requirements of the GDOT Standard Specifications Construction of Transportation Systems. These tests were typically conducted on bulk soil samples from auger only borings in potential cut areas. The GDT 810.2 testing consists of three (3) tests to determine soil gradation (GDT 4 Method), volume change (GDT 6 Method), and maximum density (GDT 7 or GDT 67 Method). The material classes are generally divided into six (6)

major classes: Class I through Class VI. Class I through Class III are further subdivided by description and physical property per GDOT specifications

Soil Resistivity: Soil resistivity is used to determine the corrosivity of soil and identify the conditions under which the corrosion of metals or concrete in soil may be accentuated. Resistivity is a measure of the resistance to flow of electrical current through the soil. Resistivity, the inverse of conductivity, is measured in units of ohm-centimeters. The soil resistivity tests were performed in general accordance with AASHTO T 288 - Standard Method of Test for Determining Minimum Laboratory Soil Resistivity

pH: pH is an expression of the concentration of dissociated hydrogen ions present in an aqueous solution. pH values range from 1 to 14, with values below 7 indicating acidic conditions and values above 7 indicating alkaline conditions. This test is performed using a calibrated electronic pH meter with a sensing probe. The meter is calibrated by immersing the probe in a solution with a known pH. These tests were performed in general accordance with ASTM D 4972 - Standard Test Method for pH of Soils.

6. <u>GEOTECHNICAL EXPLORATION DATA</u>

6.1 SUBSURFACE DATA

The results of the soil survey study are presented and attached to this report.

Tables 1 and 2 provide a summary of the soil survey boring locations and field exploration quantities for the widening of the northbound and southbound roadways, respectively. The approximate boring locations are shown on Figures 3-1 through 3-40 of Appendix A. The results of the field exploration, USCS soil classifications, and laboratory tests results are presented in Test Boring Records in Appendix B. The Test Boring Records include Atterberg limits (Plastic Limit and Liquid Limit) and moisture content within the "Graphic Depiction" of the log.

Ö	Loca	ation	face n 88)	pth	, Al	Т	ple
Boring N	Latitude	Longitude	Ground Sur Elevatio (feet-NAVD	Boring De (feet)	SPT or Auger Or	Total SP	Bulk Sam
NB-19	33.96862345	-84.34814622	1055.1	30	Auger Only	-	3
NB-20	33.96977145	-84.34766881	1048.1	25	Auger Only	-	2

|--|

·	Loca	face ۲ 88)	oth	Ā	⊢	ole	
Boring No	Latitude	Longitude	Ground Surf Elevatior (feet-NAVD	Boring Dep (feet)	SPT or Auger On	Total SP	Bulk Samp
							-
NB-78	34.05861370	-84.27734383	1060.2	25	SPT	7	-
NB-79	34.06096205	-84.27553167	1080.6	15	SPT	5	-
NB-80	34.06265329	-84.27449901	1082.1	25	Auger Only	-	2
NB-81	34.06250362	-84.27480314	1076.8	15	SPT	5	-

|--|

	Loca	ation	ace 1 88)	th	y		ole
Boring No	Latitude	Longitude	Ground Surf Elevation (feet-NAVD 8	Boring Dep (feet)	SPT or Auger Onl	Total SP1	Bulk Samp
SB-16	33.96972000	-84.34831900	1046.0	30	SPT	8	-
SB-17	33.96817394	-84.34907642	1034.9	15	SPT	5	-
SB-18	33.96950981	-84.34872791	1051.6	25	Auger Only	-	3
SB-19	33.96971688	-84.34830030	1038.3	15	SPT	5	-
		04.0000750	4070 5				
SB-30	33.98985385	-84.33908753	1051.0	20		-	2
5B-31	33.98994524	-84.33882612	1051.0	5	SPI	2	-

Table 2. Summary of Soil Survey Borings and Quantities – Southbound Widening

Ċ	Loca	ation	ace 1 88)	th	~	≥ ∟	
Boring No	Latitude	Longitude	Ground Surf Elevation (feet-NAVD	Boring Dep (feet)	SPT or Auger Onl	Total SP1	Bulk Samp
SB-32	33.99228353	-84.33847257	1030.2	5	SPT	2	-
SB-33	33.99225319	-84.33832111	1025.3	5	SPT	2	-

Table 2. Summary of Soil Survey Borings and Quantities –	<u>Southbound</u>	<u>Widening</u>
--	-------------------	-----------------

ġ	Loca	ation	face n 88) pth		Т	ole	
Boring N	Latitude	Longitude	Ground Sur Elevatio (feet-NAVD	Boring Dep (feet)	SPT or Auger On	Total SP	Bulk Samı
SB-84	34.05834938	-84.27877992	1049.7	10	SPT	4	-
SB-85	34.05969118	-84.27709772	1073.1	15	Auger Only	-	1
SB-86	34.06098478	-84.27620583	1082.1	15	Auger Only	-	1
SB-87	34.06277780	-84.27527665	1074.3	15	SPT	5	-
SB-88	34.06275855	-84.27527714	1075.2	10	SPT	4	-

	Table 2. Summar	y of Soil Survey	Borings and (Quantities -	Southbound Widening
--	-----------------	------------------	---------------	--------------	---------------------

-

Boring No.	Liquid Limit	Plastic Limit	Grain Size	USCS Classification	Moisture Content	GDT 810.2	CBR	pH Analysis	Resistivity
NB-19	1	1	1	1	1	3	1	0	0
NB-20	0	0	0	0	0	2	0	0	0

Table 3. Laboratory Testing Quantities – Northbound Widening

Boring No.	Liquid Limit	Plastic Limit	Grain Size	USCS Classification	Moisture Content	GDT 810.2	CBR	pH Analysis	Resistivity
NB-78	1	1	1	1	1	0	0	0	0
NB-79	1	1	1	1	1	0	0	0	0
NB-80	0	0	0	0	0	2	0	0	0
NB-81	1	1	1	1	1	0	0	0	0

Table 3. Laboratory Testing Quantities – Northbound Widening

Boring No.	Liquid Limit	Plastic Limit	Grain Size	USCS Classification	Moisture Content	GDT 810.2	CBR	pH Analysis	Resistivity
SB-16	1	1	1	1	1	0	0	0	0
SB-17	1	1	1	1	1	0	0	0	0
SB-18	1	1	1	1	1	3	1	0	0
SB-19	1	1	1	1	1	0	0	0	0
SB-30	1	1	1	1	1	2	0	0	0
SB-31	1	1	1	1	1	0	0	0	0

Table 4. Laboratory Testing Quantities – Southbound Widening

Boring No. SB-32 SB-33	Liquid Limit	■ 1 Plastic Limit	■ Crain Size	■ USCS Classification	■ Moisture Content	● 0 GDT 810.2	■ 0 CBR	O O PH Analysis	O O Resistivity

Table 4. Laboratory Testing Quantities – Southbound Widening

Boring No.	Liquid Limit	Plastic Limit	Grain Size	USCS Classification	Moisture Content	GDT 810.2	CBR	pH Analysis	Resistivity
SB-84	1	1	1	1	1	0	0	0	0
SB-85	1	1	1	1	1	1	0	0	0
SB-86	0	0	0	0	0	1	0	0	0
SB-87	1	1	1	1	1	0	0	0	0
SB-88	1	1	1	1	1	0	0	0	0

Table 4. Laboratory Testing Quantities -	- <u>Southbound Widening</u>
--	------------------------------

7. LIMITATIONS

This report includes the summary of the data collection effort per the authorized scope of the work and is based on generally accepted geotechnical engineering practices. The stratification lines and depth designations on the Test Boring Records represent approximate boundaries between various subsurface strata. Actual transitions between soil strata may be gradual. No warranties/guarantees are expressed or implied.

This report is intended for the sole use of AECOM, HNTB and the Georgia Department of Transportation. The scope of work performed during this study was developed for purposes specifically intended by AECOM, HNTB and the Georgia Department of Transportation and may not satisfy other users' requirements. Use of this report or the data included herein will be at the sole risk of any third-party user. NOVA is not responsible or liable for the interpretation by others of the data in this report, nor their conclusions, recommendations or opinions.

Fill soils on site may not have documentation relating to their type, placement and compaction effort. Therefore, variability of soils and compaction efforts in the existing fill soils encountered in the borings should be expected. Selection of engineering properties based on SPT N-values in the fill soils should consider the variability in soil type, placement, and compaction effort. Our scope of work was limited to the exploration as detailed herein. When atypical conditions in the fill soils such as high N-values are reported, additional assessment and/or exploration of these conditions may be necessary prior to including these atypical aspects in the design.

Our professional services have been performed, our findings obtained and presented in accordance with generally accepted geotechnical engineering principles and practices in the State of Georgia. This report is intended to be a geotechnical data report with no engineering conclusions or recommendations provided. Please see the attached "Important Information about This Geotechnical Engineering Report" for details.

APPENDIX A

FIGURES

FIGURE 3-5 STATION 195+00 TO 215+00 BORING LOCATION PLAN SOURCE: Google Earth Aerial Photos SCALE: Not to Scale

– PI No. 0001757 SOIL SURVEY GEOTECHNICAL DATA REPORT Fulton Counties, Georgia NOVA Project Number 2018089 - Task Order 5

APPROXIMATE LOCATIONS OF NOVA SOIL TEST BORINGS SR 400 CENTERLINE STATIONS

FIGURE 3-8 STATION 280+00 TO 300+00 BORING LOCATION PLAN SOURCE: Google Earth Aerial Photos SCALE: Not to Scale

Fulton

– PI No. 0001757 SOIL SURVEY GEOTECHNICAL DATA REPORT Counties, Georgia NOVA Project Number 2018089 - Task Order 5

APPENDIX B

SUBSURFACE DATA

Northbound Boring logs

KEY TO SYMBOLS AND CLASSIFICATIONS

Drilling Symbols

- Split Spoon Sample
- Bulk Sample
- SPT Sample
- Undisturbed Sample (UD)
- Standard Penetration Resistance (ASTM D1586)
- Water Table at least 24 Hours after Drilling
- 100/2" Number of Blows (100) to Drive the Spoon a Number of Inches (2)
- NX, NQ Core Barrel Sizes: 2¹/₈- and 2-Inch Diameter Rock Core, Respectively
- REC Percentage of Rock Core Recovered
- RQD Rock Quality Designation Percentage of Recovered Core Segments 4 or more Inches Long
- Loss of Drilling Water
- MC Moisture Content Test Performed
- N/E Not Encountered
- N/M Not Measured
- ___ Caving

Strata Symbols

Paving

Gravel /Graded Aggregate Base

Fill

Clayey Sand

Silty Sand

Sandy Silt/Silt

Low Plasticity Clay

Partially Weathered Rock

High Plasticity Clay

Topsoil

Alluvium

Poorly Graded Sand with Silt

CORRELATION OF PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY

	<u>Number of Blows, "N"</u>	Approximate Relative Density
	0-4	Very Loose
	5 – 10	Loose
SANDS	11 - 30	Medium Dense
	31 – 50	Dense
	Over 50	Very Dense
	<u>Number of Blows, "N"</u>	Approximate Consistency
	0-2	Very Soft
	3 – 4	Soft
SILTS	5 – 8	Firm
and	9 – 15	Stiff
CLAYS	16 - 30	Very Stiff
	31 - 50	Hard
	Over 50	Very Hard

DRILLING PROCEDURES

Soil sampling and standard penetration testing performed in accordance with ASTM D1586. The standard penetration resistance is the number of blows of a 140 pound hammer falling 30 inches to drive a 2-inch O.D., 1^{*}/₃-inch I.D. split spoon sampler one foot. The undisturbed sampling procedure is described by ASTM D1587.

COARSE GRAINED	GRAVELS	Clean Gravel	GW	Well graded gravel
SOILS		less than 5% fines	GP	Poorly graded gravel
		Gravels with Fines	GM	Silty gravel
		more than 12% fines	GC	Clayey gravel
	SANDS	Clean Sand	SW	Well graded sand
		less than 5% fines	SP	Poorly graded sand
		Sands with Fines	SM	Silty sand
		more than 12% fines	SC	Clayey sand
FINE GRAINED	SILTS AND CLAYS	Inorgania	CL	Lean clay
SOILS	Liquid Limit	Inorganic	ML	Silt
	less than 50	Organic	OL	Organic clay and silt
	SILTS AND CLAYS	Inorganic	СН	Fat clay
	Liquid Limit	Inorganic	MH	Elastic silt
	50 or more	Organic	ОН	Organic clay and silt
HIGHLY ORGANIC		Organic matter, dark	DT	Post
SOILS		color, organic odor	ΓI	reat

SOIL CLASSIFICATION CHART

PARTICLE SIZE IDENTIFICATION

GRAVELS	Coarse	³ ⁄ ₄ inch to 3 inches
	Fine	No. 4 to ¾ inch
SANDS	Coarse	No. 10 to No. 4
	Medium	No. 40 to No. 10
	Fine	No. 200 to No. 40
SILTS AND CLAYS		Passing No. 200

	-	NI TEST RE	BORING ECORD NB-19	PROJECT: CLIENT: <u>AECOM/GDOT</u> PROJECT LOCATION: <u>SR 400 - Fulto</u> LOCATION: <u>STA 207+75 R128'</u> DRILLER: <u>TTL CME 550X (SN 3719</u> DRILLING METHOD: <u>Hollow Stem A</u> DEPTH TO - WATER> INITIAL: ¥ <u>N</u>	PROJECT NO.: 2018089 LATITUDE: 33.96862345 LONGITUDE: -84.34814622 ELEVATION: 1055.1 feet LOGGED BY: D. Sam DATE: 6/27/2019 N/M CAVING> C.									
ľ		n 88)			0	ater		(1)		Graphic D	epictio	n		
	Depth (feet)	Elevation (ft-NAVD 8		Description	Graphic	Groundwa	Sample Type	N-Value	● BLOV ▲ NATU PLASTICLIM	V COUNT JRAL MOIS ∕IIT └───	STURE	LIQU	ווחו	MIT
e.	0	- 1055		illu an adiuma ka fin a CAND (UDA)					10	20	30 4	0 6	0	100
this boring and should not be interpreted as being indicative of the sit	5 10 15	 	FILL: Gray s	ilty medium to fine SAND (IIB4)										
ation pertains only to	20	- - 1035 -	RESIDUUM: Gray m	icaceous silty coarse to fine SAND (I,	A3)									
This inform	25	- - - - - -								▲ ▲				
	30	 1025 	Bor	ing Terminated at 30 ft.										
	35	- 1020												
	Auger	only				I	LI				P	age	<u> </u>	_⊥⊥ f 1

	-	N TEST RI N	DVA F BORING ECORD NB-20	PROJECT:	- Pl# and Fo 3) jer % AFT	# OOC prsyth 6 ENE ER 24	0175 Cour RGY: HOUF	7 nties <u>92.1</u> 2S: ₹	PROJECT NO.: 2018089 LATITUDE: 33.9697714 LONGITUDE: -84.3476688 ELEVATION: 1048.1 fee LOGGED BY: D. Sam DATE: 6/27/2019 N/M CAVING> C.					9 5 81 t
ľ		(8)				ter				Graphi	c Depic	tion		
	Depth (feet)	Elevatior (ft-NAVD 8		Description	Graphic	Groundwa	Sample Type	N-Value	● BI	LOW COUN ATURAL M	IT OISTUF	RE ⊣ IIC	ו סווח	IMIT
e.	0	_							1	0 2	0 30	40	60	100
ne sit		-	FILL: Red s	silty medium to fine SAND (IIB4)										
e of tl		-												
cative		- 1045												
indic	5													
being		-												
d as		-												
prete		- 1040												
inter	10	-												
ot be		-												
ou plr		-												
shou		- 1035												
g anc	15													
borin		-												
this		-												
ly to		- 1030												
ins or	20													
oerta		-	RESIDUUM: Light	brown silty medium to fine SAND (IIB3)										
tion		-												
orma		- 1025												
is inf	25													
ίL,		_	Bor	ing Terminated at 25 ft.										
ŀ		-												
		- 1020												
	30	-												
		_												
ŀ		-												
ĺ		- 1015												
	35	-												
ŀ	Augeri	onlv												
												Pac	e 1 (of 1

	-	N TEST RI N	BORING ECORD NB-79	PROJECT:	PROJECT NO.: 2018089 LATITUDE: 34.06096205 LONGITUDE: 84.27553167 ELEVATION: 1080.6 feet LOGGED BY: S. Nixon DATE: 2/27/2019 N/MCAVING>					
	Depth (feet)	Elevation (ft-NAVD 88)		Description	Graphic	Groundwater	Sample Type	N-Value	Graphic Depiction BLOW COUNT NATURAL MOISTURE PLASTIC LIMIT — 1 	IQUID LIMIT
This information pertains only to this boring and should not be interpreted as being indicative of the site.	0 5 5 10 10 15 20 20 25 25	- 1075 	FILL: Firm to soft re	TOPSOIL: 3 inches ddish brown medium to fine sandy SII (ML) prange silty medium to fine SAND, trac mica (SM) hedium to fine SAND, trace mica (SM)		En la		5 4 9 43 31		IQUID LIMIT 60 100
	35	- 1050 - - - - - - 1045							P:	age 1 of 1

	-	N TES ^T R	DVA T BORING ECORD NB-80	PROJECT: CLIENT: <u>AECOM/GDOT</u> PROJECT LOCATION: <u>SR 400 - Fulton</u> LOCATION: <u>STA 635+22 R150'</u> DRILLER: <u>TTL CME 550X (SN 371903</u> DRILLING METHOD: <u>Hollow Stem Aug</u> DEPTH TO - WATER> INITIAL: ¥ <u>N/E</u>	<u>- Pl</u> and Fo) er % _ AFTI	# 000 prsyth 6 ENE ER 24	Cour Cour RGY: HOUR	7 nties 	PROJECT NO.:20180 LATITUDE: _34.06265 LONGITUDE: _84.2744 ELEVATION:1082.1 f LOGGED BY:D. Sar DATE:3/28/2019 				989 329 990 eet n	<u> </u> <u> </u>
ľ		(88)				ter				Graphic	Depictio	n		
	Depth (feet)	Elevation ft-NAVD 8		Description	Graphic	broundwa	Sample Type	N-Value	● BI	LOW COUN	T DISTURE			
	0					0			PLASTIC 1	$LIMIT \vdash 20$) 30 4		D LI 0	MIT 100
site.			1	TOPSOIL: 3 inches										TŤ
indicative of the	5	- 1080 	FILL: Rec	d brown fine sandy SILT (IIB4)										
preted as being		- - 1075 												
nd should not be inter	10	- - - - - -												
ng a	15	-	DESIDIU	M: Pod fino sandy SILT (IIR3)			L∎							
is only to this bori	20	- 1065 	RESIDUU	ivi. Reu fine sanuy Silt (iibs)										
information pertair	25	- - 1060 												
This	30	- - 1055 	Bor	ing Terminated at 25 ft.										
	35	- - - - -												
	Auger	only				<u> </u>	<u> </u>		<u> </u>		F	Page	10	 f 1

	-	N TEST RI	DVA F BORING ECORD NB-81	PROJECT: CLIENT: <u>AECOM/GDOT</u> PROJECT LOCATION: <u>SR 400 - Fulte</u> LOCATION: <u>STA 634+45 R86'</u> DRILLER: <u>TTL CME 550X (SN 3719</u> DRILLING METHOD: <u>Hollow Stem A</u> DEPTH TO - WATER> INITIAL: ₩ N.	7 nties <u>92.1</u> S: ¥	PROJECT NO.: 2018089 LATITUDE: 34.06250362 LONGITUDE: 84.2748031 ELEVATION: 1076.8 feet LOGGED BY: S. Nixon DATE: 2/27/2019 N/MCAVING>							
ŀ		(8)				ter			Grap	hic Depicti	on		_
	Depth (feet)	Elevatior (ft-NAVD 8		Description	Graphic	Groundwa	Sample Type	N-Value	● BLOW CC ▲ NATURAL PLASTIC LIMIT	unt Moisture	: LIQU	IID LII	MIT
ite.	0		1	TOPSOIL · 3 inches					10	20 30 4	<u>40 6</u>	50 	100
ive of the s		- 1075 -	RESIDUUM: Very de	nse pink silty medium to fine SAND mica (SM)	with			65				•	
ing indicat	5	-	silty medium t	o fine SAND, trace rock fragments				100/ 10"					•
eted as be		- 1070 -						100/ 10"					
t be interpr	10	-						100/ 10"					
ld no		- 1065											
g and shou	15	-	RESIDUUM: Dense	yellowish red silty coarse to fine SAI (SM)	ND			33					
porinç		-	Bor	ing Terminated at 15 ft.									
nly to this t		- 1060 -											
ains o	20	-											
n perta		- 1055											
matio		-											
This infor	25	-											
		- 1050											
		-											
ŀ	30	-											
		- 1045											
	35	-											
		Ē									Page	10	 f 1_

Southbound Boring logs

KEY TO SYMBOLS AND CLASSIFICATIONS

Drilling Symbols

- Split Spoon Sample
- Bulk Sample
- SPT Sample
- Undisturbed Sample (UD)
- Standard Penetration Resistance (ASTM D1586)
- Water Table at least 24 Hours after Drilling
- 100/2" Number of Blows (100) to Drive the Spoon a Number of Inches (2)
- NX, NQ Core Barrel Sizes: 2¹/₈- and 2-Inch Diameter Rock Core, Respectively
- REC Percentage of Rock Core Recovered
- RQD Rock Quality Designation Percentage of Recovered Core Segments 4 or more Inches Long
- Loss of Drilling Water
- MC Moisture Content Test Performed
- N/E Not Encountered
- N/M Not Measured
- ___ Caving

Strata Symbols

Paving

Gravel /Graded Aggregate Base

Fill

Clayey Sand

Silty Sand

Sandy Silt/Silt

Low Plasticity Clay

Partially Weathered Rock

High Plasticity Clay

Topsoil

Alluvium

CORRELATION OF PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY

	<u>Number of Blows, "N"</u>	Approximate Relative Density		
	0 - 4	Very Loose		
	5 – 10	Loose		
SANDS	11 - 30	Medium Dense		
	31 – 50	Dense		
	Over 50	Very Dense		
	<u>Number of Blows, "N"</u>	Approximate Consistency		
	0-2	Very Soft		
	3 – 4	Soft		
SILTS	5 – 8	Firm		
and	9 – 15	Stiff		
CLAYS	16 - 30	Very Stiff		
	31 - 50	Hard		
	Over 50	Very Hard		

DRILLING PROCEDURES

Soil sampling and standard penetration testing performed in accordance with ASTM D1586. The standard penetration resistance is the number of blows of a 140 pound hammer falling 30 inches to drive a 2-inch O.D., 1^{*}/₃-inch I.D. split spoon sampler one foot. The undisturbed sampling procedure is described by ASTM D1587.

COARSE GRAINED	GRAVELS	Clean Gravel	GW	Well graded gravel
SOILS		less than 5% fines	GP	Poorly graded gravel
		Gravels with Fines	GM	Silty gravel
		more than 12% fines	GC	Clayey gravel
	SANDS	Clean Sand	SW	Well graded sand
		less than 5% fines	SP	Poorly graded sand
		Sands with Fines	SM	Silty sand
		more than 12% fines	SC	Clayey sand
FINE GRAINED	SILTS AND CLAYS	Inorgania	CL	Lean clay
SOILS	Liquid Limit	morganic	ML	Silt
	less than 50	Organic	OL	Organic clay and silt
	SILTS AND CLAYS	Inorganic	СН	Fat clay
	Liquid Limit	inorganic	MH	Elastic silt
	50 or more	Organic	ОН	Organic clay and silt
HIGHLY ORGANIC		Organic matter, dark	PT	Peat
SOILS		color, organic odor		

SOIL CLASSIFICATION CHART

PARTICLE SIZE IDENTIFICATION

GRAVELS	Coarse	¾ inch to 3 inches	
	Fine	No. 4 to ¾ inch	
SANDS	Coarse	No. 10 to No. 4	
	Medium	No. 40 to No. 10	
	Fine	No. 200 to No. 40	
SILTS AND CLAYS		Passing No. 200	

	-	N TEST RI	DVA BORING ECORD SB-16	PROJECT:	- Pl; n and Fo D3) iger_ %	# 000 prsyth 6 ENE ER 24	D1757 n Cour ERGY: HOUR	7 nties <u>92.1</u> S: ¥	PROJECT NO.: 2018089 LATITUDE: 33.96972000 LONGITUDE: -84.34831900 ELEVATION: 1046.0 feet LOGGED BY: D. Sam DATE: 8/2/2019 25' CAVING> C. 29'
	с -	on 88)			ic	<i>l</i> ater	<u>e</u>	ər	Graphic Depiction
	Deptl (feet)	Elevati -NAVD		Description	Graph	wpuno	Samp Type	N-Valu	 BLOW COUNT NATURAL MOISTURE
	0	H H			_	G			PLASTIC LIMIT
e site.		- 1045	FILL: Medium dens	se brown silty fine SAND with mica an	d 💥	×		18	
dicative of the		-		iock iraginents (Sivi)				10	
ing in	5	-						18	
eted as be		-						25	
be interpr	10	-		SAND with mica (SM)				8	
nd should not	15	- 1035 - -							
o this boring a	15	- 1030 -						14	
ertains only t	20	- - - 1025	RESIDUUM: Mediur	n dense brown micaceous silty mediu to fine SAND (SM)	m			17	•
uformation p		-							
This i	25	- 1020				Ţ		13	
-	30	-				<u>_</u>		17	
		- 1015 -	Bor	ing Terminated at 30 ft.				17	
╞		-							
	35	_							
									Page 1 of 1

		N TEST RI	DVA F BORING ECORD SB-17	PROJECT:	n and Fo 03) <u>uger %</u> AFTE	[#] 000 orsyth 6 ENE ER 24	Cour Cour RGY: HOUR	n <u>ties</u> 92.1 S: ¥	PROJECT NO.: 2018089 LATITUDE: 33.96817394 LONGITUDE: -84.34907642 ELEVATION: 1034.9 feet LOGGED BY: D. Sam DATE: 5/29/2019 N/M CAVING>_C.	- - - -
	Depth (feet)	Elevation (ft-NAVD 88)		Description	Graphic	Groundwater	Sample Type	N-Value	Graphic Depiction BLOW COUNT NATURAL MOISTURE PLASTIC LIMIT LIQUID LIM	
This information pertains only to this boring and should not be interpreted as being indicative of the site.	0 5 10 10 15 20 25 30	$-\frac{1}{2}$	FILL: Medium dense mica RESIDUUM: Medium Bor	TOPSOIL: 6 inches brown silty medium to fine SAND, tra and rock fragments (SM) n dense brown silty coarse to fine SAN (SM)	ND	COD		11 16 16 15 25		
	35	- 1000 								

	-	R	DVA I BORING ECORD SB-18	PROJECT:	<u>- Pl</u> and Fo 3) er %	# OOC prsyth 6 ENE ER 24	D175 Cour RGY: HOUR	7 nties 92.1 2S: ₹		JECT NC TUDE: _ GITUDE: /ATION: GED BY: E: CAVIN).: 33.9 <u>-84</u> 10 8/2/ IG>	2013 9695 .348 051.6 D. S /201	8089 098 727 5 fee am 9	9 1 91 et
	Depth (feet)	Elevation (ft-NAVD 88)		Description	Graphic	Groundwater	Sample Type	N-Value		Graphic OW COUN	: Depic IT OISTUF	RE		
dicative of the site.	0	- - 1050 -	FILL: Light brow	n clayey medium to fine SAND (IIB4)					10 10) 20	0 30		60	100
oreted as being in		- - - - -												
nd should not be interp	10	- - - 1040 -												
is only to this boring a	20	- - - 1035 - -	RESIDUUM: Grayish	brown silty medium to fine SAND (IIIC1)									
is information pertair	25	- - 1030 - -	Brown sil	ty medium to fine SAND (IIB3)										
Th	30	- - 1025 - -	Bor	ing Terminated at 25 ft.										
	35	- - 1020 - -												
	Auger d	r only	<u> </u>			<u> </u>	<u> </u>	<u> </u>	I			Pac	∟⊥⊥ ıe 1	 of 1

	-	N TEST RI	DVA F BORING ECORD SB-19	PROJECT:	<u>- Pl</u> and Fo 3) jer % AFTI	# 000 prsyth 6 ENE ER 24	D175 n Cour ERGY: HOUR	7 nties <u>92.1</u> :S: ₹	PROJECT NO.: 2018089 LATITUDE: 33.96971688 LONGITUDE: -84.34830030 ELEVATION: 1038.3 feet LOGGED BY: D. Sam DATE: 5/29/2019 N/M CAVING> C.
	epth eet)	/ation AVD 88)		Description	aphic	ndwater	mple ype	/alue	Graphic Depiction BLOW COUNT
	(f	Elev (ft-N/			Gr	Grout	Sa	N-N	NATURAL MOISTURE
e of the site.		- - - -	FILL: Medium dens trace m	TOPSOIL: 4 inches e brown red silty medium to fine SANE ica and rock fragments (SM)				13	
eing indicativ	5	- 1035 - -						20	• • • • • • • • • • • • • • • • • • •
reted as be		- - - 1030						22	$\bullet $
ot be interp	10	-						15	
and should no	15	- 1025 -	RESIDUUM: Mediu	m dense dark brown silty coarse to fine SAND (SM)				15	
his boring		-	Bor	ing Terminated at 15 ft.					
ains only to th	20	- 							
This information pert	25	- - - 1015 -							
-	30	- - - 1010 -							
-	35	- - 1005 - -							
									Page 1 of 1

		N TEST RE S	BORING CORD B-30	PROJECT:	- Pland For and For) er%	# OOC prsyth 6 ENE ER 24	Cour Cour RGY: HOUR	7 nties <u>92.1</u> S: ¥	PROJECT I LATITUDE: LONGITUE ELEVATIOI LOGGED E DATE: N/M CAN	NO.: _E: <u>-84</u> N: N: SY: 4/8/ /ING>	2018 9898 .339 070.5 D. Sa /201	3089 538! 087! 6 feet am 9	<u>5</u> 53 t
	Depth (feet)	Elevation ft-NAVD 88)		Description	Graphic	broundwater	Sample Type	N-Value	Grap BLOW CC ANATURAL	hic Depic UNT MOISTUI	ction RE		
oring and should not be interpreted as being indicative of the site.	0	- 1070 - 1070 - 1065 	RESIDUUM: Bro	TOPSOIL: 3 inches wn silty medium to fine SAND (IIB4)		0			PLASTIC LIMIT 10				
is information pertains only to this bo	20	- - - - - - - - - - - - - - - - - - -	Bor	ing Terminated at 20 ft.									
Thi	30 35 <i>Auror</i>	- 1045 											
	Auger										Pag	<u>e 1 (</u>	of 1

	N TES ^T R	DVA T BORING ECORD SB-31	PROJECT:	<u>PI#</u> on and Fo 03) uger % E AFTE	e OOO rsyth	Cour Cour RGY: HOUR	nties 92.1 S: ₹	PROJECT NO.: 2018089 LATITUDE: 33.98994524 LONGITUDE: -84.33882612 ELEVATION: 1051.0 feet LOGGED BY: D. Sam DATE: 3/14/2019 N/M CAVING> C.
Depth (feet)	Elevation (ft-NAVD 88)		Description	Graphic	Groundwater	Sample Type	N-Value	Graphic Depiction BLOW COUNT NATURAL MOISTURE PLASTIC LIMIT
ng indicative of the site.		RESIDUUM: Medium to fir Bo	TOPSOIL: 2 inches n dense to dense dark brown silty coa ne SAND with gravel (SM) ring Terminated at 5 ft.	arse			29 37	
d not be interpreted as bei	+ 1045 1040		v					
nly to this boring and shou								
ormation pertains o								
	- - - - - - -							
30	 1020 							
	1							Page 1 of 1

	-	N TEST RI	DVA F BORING ECORD SB-32	PROJECT:	<u>- Pl#</u> n and Fo D3) uger % E AFTE	e OOC rsyth	Cour Cour RGY: HOUR	nties <u>92.1</u> S: ₹	PROJECT NO.: 2018089 LATITUDE: 33.99228353 LONGITUDE: -84.33847257 ELEVATION: 1030.2 feet LOGGED BY: D. Sam DATE: 3/14/2019 N/M CAVING>_C.
	Depth (feet)	Elevation (ft-NAVD 88)		Description	Graphic	Groundwater	Sample Type	N-Value	Graphic Depiction BLOW COUNT NATURAL MOISTURE DIASTIC LIMIT
dicative of the site.	0	- 1030 - - -	FILL: Stiff or	TOPSOIL: 2 inches ange coarse to fine sandy SILT (ML)				10	
terpreted as being inc	5	- 1025 - - -	B	oring Terminated at 5 ft.				12	
and should not be in	15	- 1020 - - -							
ns only to this boring	20	- 1015 - - -							
is information pertai	25	- 1010 - - -							
	30	- 1005 - - - - 1000 -							
	35	- - - 995							
									Page 1 of 1

	-	N TES ⁻ RI	DVA T BORING ECORD SB-33	PROJECT:	- Pl# n and Fc 03) ger% AFTE	+ OOC orsyth	Cour Cour RGY: HOUR	7 nties <u>92.1</u> S: ₹	PROJECT NO.: 2018089 LATITUDE: 33.99225319 LONGITUDE: -84.33832111 ELEVATION: 1025.3 feet LOGGED BY: D. Sam DATE: 3/14/2019 N/M CAVING> C.
	Depth (feet)	Elevation (ft-NAVD 88)		Description	Graphic	Groundwater	Sample Type	N-Value	Graphic Depiction BLOW COUNT NATURAL MOISTURE PLASTIC LIMIT
ve of the site.	0	- 1025 -	FILL: Medium der	TOPSOIL: 2 inches ise dark red silty medium to fine SANE th rock fragments (SM)				16	
as being indicati	5	- 	RESIDUUM: Loos	e red silty medium to fine SAND (SM) ring Terminated at 5 ft.				6	
not be interpreted	10	- - - 1015							
o this boring and should	15	- - - - - - - -							
mation pertains only to	20	- - - 1005 -							
This infor	25	- - 1000 -							
	30	- - - 995 -							
	35	- 990							
									Page 1 of 1

	N TES ^T R	T BORING ECORD SB-84	PROJECT: $_$ CLIENT: <u>AECOM/GDOT</u> PROJECT LOCATION: <u>SR 400 - Fult</u> LOCATION: <u>STA 614+71 L93'</u> DRILLER: <u>TTL CME 550X (SN 3714</u> DRILLING METHOD: <u>Hollow Stem A</u> DEPTH TO - WATER> INITIAL: \gtrless <u>N</u>	<u>PI#</u> on and Fo 203) Auger% /EAFTE	+ OOC orsyth	01757 n Cour RGY: HOUR	7 <u>nties</u> <u>92.1</u> S: ₹	PROJECT NO.: 2018089 LATITUDE: 34.05834938 LONGITUDE: -84.27877992 ELEVATION: 1049.7 feet LOGGED BY: S. Nixon DATE: 2/25/2019 N/M CAVING> C.
Depth (feet)	Elevation (ft-NAVD 88)		Description	Graphic	Groundwater	Sample Type	N-Value	Graphic Depiction BLOW COUNT NATURAL MOISTURE PLASTIC LIMIT
ot be interpreted as being indicative of the site.	 	RESIDUUM: Medium	TOPSOIL: 6 inches n dense black and brown silty mediu fine SAND (SM)	m to			15 27 16 22	
this boring and should no	 							
ation pertains only to	 — 1030 							
25	- 1025 							
30	- - - - - - - - - - - - -							
35	- 1015 							
								Page 1 of 1

	-	N TEST RE S	BORING CORD B-85	PROJECT: CLIENT: AECOM/GDOT PROJECT LOCATION: <u>SR 400 - Fulton a</u> LOCATION: <u>STA 622+00 L87'</u> DRILLER: <u>TTL CME 550X (SN 371903</u> DRILLING METHOD: <u>Hollow Stem Auge</u> DEPTH TO - WATER> INITIAL: ₩ <u>N/E</u>	PI# and Fo) er% AFTI	# OOC prsyth 6 ENE ER 24	Cour Cour RGY: HOUR	7 nties <u>92.1</u> S: ₹	PRO. LATI LON ELEV LOG LOG DATE	JECT NC TUDE: _ GITUDE: /ATION: GED BY: E: CAVIN	0.:2 34.0! -84.: _10 	2018 596 277 73.1 Rusi 201	3089 911 097 fee nem 9	9 8 72 2 2 1 2 1 2
		88)			U	ater	0	e		Graphic	: Depict	ion		
	Depth (feet)	Elevatio ft-NAVD		Description	Graphi	broundwa	Sample Type	N-Valu	● BL	OW COUN	it Oisturi	E		
	0					0			PLASTIC I	LIMIT - D 20	D 30	LIQ 40	UID I 60	LIMIT 10
e site		Ī		TOPSOIL: 2 inches										
of th∈		-	RESIDUUM: Red	dish silty medium to fine SAND (IIB3)										
tive o		- 1070												
ndica	5	-												
ing i														
as be														
eted		- 1065												
terpr	10													
be in														
not														
pluod		- 1060												
and sl	15	-												
ring a	15	╞	Bor	ing Terminated at 15 ft.										
iis bo														
to th		- 1055												
only	20	-												
tains	20	-												
n per														
natio		- 1050												
inforr														
This i	25	$\left \right $												
		†												
		- 1043												
	30	$\left \right $												
		- 1040												
	35	-												
	Auger	only			1				I					
	-													
												Pag	e 1	of 1

	-	N TEST RE S	BORING CORD B-86	PROJECT: CLIENT: AECOM/GDOT PROJECT LOCATION: <u>SR 400 - Fulton a</u> LOCATION: <u>STA 627+81 L88'</u> DRILLER: <u>TTL CME 550X (SN 371903</u> DRILLING METHOD: <u>Hollow Stem Aug</u> DEPTH TO - WATER> INITIAL: ¥ <u>N/E</u>	<u>and Fo</u> and Fo) er % _ AFT	# 000 prsyth 6 ENE ER 24	Cour Cour RGY: HOUR	7 nties <u>92.1</u> :S: ¥	PRC LATI LON ELE LOG DAT	JECT NO TUDE: GITUDE VATION: GED BY E: CAVIN	D.:	201 0609 4.270 082. 082. 082. 082. 082. 082. 082. 082	808 984 520 1 fe sher 19	39 78 583 et na	
ľ		n 88)			J	ater	۵	e		Graphi	c Depi	ction			
	Depth (feet)	Elevatic (ft-NAVD		Description	Graphi	Groundw	Sampl	N-Valu		LOW COUI	NT IOISTU	IRE			AIT
e.	0								PLASTIC 1	0 2	0 30	0 40	60 60		100
e of the site		 1080	RESIDUUM: Rec	TOPSOIL: 3 inches d clayey medium to fine SAND (IIIC2)											
ndicativ	5	- -													
reted as bein		- 1075 													
ot be interp	10	-													
nd should no		- 1070 - -													
ring a	15	╞╴┝	Bor	ing Terminated at 15 ft.	+		┝┴┻╌								+
ly to this bo		- 1065 -													
pertains on	20	- -													
nformation		- 1060 - -													
This	25	- - - 1055													
		-													
	30														
		- 1050 -													
	35														
	Auger	only			<u> </u>	1	1	L	<u> </u>	<u> </u>	<u> </u>	Pa	ц. Г. ge 1	of	1

	-	N TEST RI	DVA F BORING ECORD SB-87	PROJECT:	<u>- Pl</u> and For and For er % _ AFT	# OOC prsyth 6 ENE ER 24	D175 Cour ERGY: HOUR	7 nties <u>92.1</u> 25: ₹	PROJECT LATITUDE LONGITUI ELEVATIC LOGGED DATE: N/M CA	NO.:	201 062 4.275 074. D. 5 1/20 ⁻ C	808 7778 5276 3 fee Sam 19	9 30 265 et
	Depth (feet)	Elevation (ft-NAVD 88)		Description	Graphic	Broundwater	Sample Type	N-Value	Gra BLOW CO NATURA	ohic Depi DUNT ∟ MOISTL	iction JRE		
being indicative of the site.	0	- 1070	RESIDUUM: Loose	TOPSOIL: 3 inches brown micaceous silty medium to fine SAND (SM) k brown micaceous silty medium to fine SAND (SM)	<u></u>			7	PLASTIC LIMIT 10	20 3		QUID 60	
be interpreted as b	10	- - - 1065						20 18		•			
is boring and should not	15	- - - 1060 -	Bor	ing Terminated at 15 ft.				16					
pertains only to th	20	- - - 1055 -											
This information	25	- - - 1050 -											
	30	- 											
-	35	- - 											
											Pa	ge 1	of 1

	-	NC TEST RE S	BORING CORD B-88	PROJECT: CLIENT: <u>AECOM/GDOT</u> PROJECT LOCATION: <u>SR 400 - F</u> LOCATION: <u>STA 634+77 L81'</u> DRILLER: <u>TTL CME 550X (SN 37</u> DRILLING METHOD: <u>Hollow Ster</u> DEPTH TO - WATER> INITIAL: ₩	PROJECT NO.: 2018089 LATITUDE: 34.06275855 LONGITUDE: -84.27527714 ELEVATION: 1075.2 feet LOGGED BY: B. Rushema DATE: 2/22/2019 N/M CAVING> C.				
	Depth (feet)	Elevation (ft-NAVD 88)		Description	Graphic	Groundwater	Sample Type	N-Value	Graphic Depiction BLOW COUNT NATURAL MOISTURE PLASTIC LIMIT
This information pertains only to this boring and should not be interpreted as being indicative of the site.	0 5 10 10 15 20 20 20 25 30 30	- 1075 - 1070 - 1070 - 1065 - 1065 - 1065 - 1055 - 1055 - 1055	RESIDUUM: Firm Bor	TOPSOIL: 2 inches to stiff reddish brown medium to sandy SILT (ML)	fine			6 7 9 12	
									Page 1 of 1

APPENDIX C

LABORATORY TEST DATA

Atterberg Limits, Grain Size Analysis, and Moisture Content

Table A: Summary of Northbound USCS Index Testing Results

BORING No.	SAMPLE DEPTH (Feet)	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT FINER #40	PERCENT FINER #200	USCS CLASSIFICATION	MOISTURE CONTENT (%)
NB-19	24.0-25.0	NP	NP	NP	49.7	19.8	SM	15.0

 Table A: Summary of Northbound USCS Index Testing Results

BORING No.	SAMPLE DEPTH (Feet)	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT FINER #40	PERCENT FINER #200	USCS CLASSIFICATION	MOISTURE CONTENT (%)
NB-79	1.0-2.5	NP	NP	NP	84.5	58.2	ML	20.8
NB-81	13.5-15.0	NP	NP	NP	60.8	33.8	SM	14.0

Tested By: HW

Tested By: AB

Table B: Summary of Southbound USCS Index Testing Results

BORING No.	SAMPLE DEPTH (Feet)	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT FINER #40	PERCENT FINER #200	USCS CLASSIFICATION	MOISTURE CONTENT (%)
SB-16	23.5-25.0	NP	NP	NP	71.9	32.7	SM	23.1
SB-17	3.5-5.0	NP	NP	NP	56.1	19.2	SM	16.4
SB-18	18.0-19.0	NP	NP	NP	75.1	30.7	SM	14.6
SB-19	13.5-15.0	NP	NP	NP	40.8	17.1	SM	20.5

Table B: Summary of Southbound USCS Index Testing Results

BORING No.	SAMPLE DEPTH (Feet)	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT FINER #40	PERCENT FINER #200	USCS CLASSIFICATION	MOISTURE CONTENT (%)
SB-30	12.0-13.0	NP	NP	NP	82.9	19.7	SM	24.3
SB-31	3.5-5.0	NP	NP	NP	50.5	12.6	SM	13.2
SB-32	3.5-5.0	NP	NP	NP	82.0	63.0	ML	38.9
SB-33	3.5-5.0	NP	NP	NP	85.4	36.5	SM	19.4

Table B: Summary of Southbound USCS Index Testing Results

BORING No.	SAMPLE DEPTH (Feet)	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT FINER #40	PERCENT FINER #200	USCS CLASSIFICATION	MOISTURE CONTENT (%)
SB-84	1.0-2.5	NP	NP	NP	72.7	21.1	SM	28.5
SB-85	7.0-8.0	NP	NP	NP	87.8	45.8	SM	16.9
SB-87	13.5-15.0	NP	NP	NP	83.4	37.7	SM	34.1
SB-88	1.0-2.5	NP	NP	NP	93.7	54.8	ML	34.0

Tested By: MLS

Tested By: JC

Tested By: HW

Tested By: JC

Tested By: AB

Tested By: MLS

Tested By: AB

Tested By: WAM

Tested By: WAM

Tested By: WAM

Tested By: AB

Tested By: JC

Tested By: AB

GDT 810.2

DOT 420

- PI# 0001757

NOVA Project Number 2018089	
-----------------------------	--

	MOISTURE DENSIT	Y PROCTOR P	OINTS			
Boring No.	NB-19	NB-19	NB-19	NB-20	NB-20	
Depth	15-20	20-25	25-30	15-20	20-25	
Offset						
Dry Weight (Moisture Sample)						
% Natural Moisture	7.2	16.0%	14.2%	19.0%	24.4%	
Wt. of Mixture & Mold						
Wt. of Mold						
Wet Wt. of Mixture						
Wet Wt. per Cu. Ft.	116.3	113.2	118.1	114.2	116.3	
Dry Wt. per Cu. Ft.						
	SV	/ELL				
A. Height of collar above base plate = .875	0.875	0.875	0.875	0.875	0.875	
B. Original dial reading	0.149	0.159	0.148	0.124	0.146	
C. Original height of specimen (A + B)						
D. Final dial reading	0.340	0.303	0.282	0.304	0.251	
E. Final height of specimen (A + D)						
F. Change in thickness (E - C)						
G. % Swell; Direct from Table III using C & F	18.7	13.9	13.1	18	10.3	
	SHRI	NKAGE	•	•		
H. Height of collar above base plate (short legs) = .250	0.250	0.250	0.250	0.250	0.250	
I. Original dial reading on short legs	0.147	0.245	0.146	0.142	0.145	
J. Original thickness (H + I)						
K. Original volume in cu. Inches; Table I using J						
L. Height of collar above base plate (long legs) = 3.250	3.250	3.250	3.250	3.250	3.250	
M. Average of 4 dial readings for diameter of dry specimen	0.745	0.740	0.728	0.716	0.705	
N. Diameter of dry specimen (L + M)						
0. Area of dry specimen; From Table II using N						
P. Final dial reading on short legs	0.139	0.238	0.144	0.134	0.126	
Q. Final thickness (H + P)						
R. Volume of dry specimen (0 x Q)						
S. Change in volume (K - R)						
T. % Shrinkage 100 (S ÷ K)	2.3	1.9	1.6	3.7	6.9	
	RESULTS OF TESTS ON N	INUS 10 MES	H MATERIAL			
Maximum Density (pcf)	106.9	102.7	108.0	101.4	106.8	
Optimum Moisture (%)	13.9	10.7	13.6	15.8	16.3	
Percent Swell (%)	18.7	13.9	13.1	18.0	10.3	
Percent Shrinkage (%)	2.3	1.9	1.6	3.7	6.9	
Volume Change (%)	21.0	15.8	14.7	21.7	17.2	
	RESULTS OF TESTS CALCU	JLATED FOR TO	OTAL SAMPLE			
Retained on No. 10 (%)	13.5	11.7	13.1	9.6	16.6	
Maximum Density (pcf)	112.1	107.1	112.1	104.6	112.2	
Volume change (%)	13.0	1.7	13.0	20.0	14.7	
Class	IIB4	IA3	IA3	IIB4	IIB3	
Tested By	SC	MLS/SC	MLS/SC	MLS/SC	MLS/SC	

DOT 420

- PI# 0001757

NOVA Project Number 2018089

	MOISTURE DENSITY PROCTOR POINTS								
Boring No.				NB-80	NB-80				
Depth				10-15	20-25				
Offset									
Dry Weight (Moisture Sample)									
% Natural Moisture				15.2%	10.4%				
Wt. of Mixture & Mold									
Wt. of Mold									
Wet Wt. of Mixture									
Wet Wt. per Cu. Ft.				105.7	113.0				
Dry Wt. per Cu. Ft.									
					SW	ELL			
A. Height of collar above base plate = .875				0.875	0.875				
B. Original dial reading				0.179	0.148				
C. Original height of specimen (A + B)									
D. Final dial reading →				0.365	0.209				
E. Final height of specimen (A + D)									
F. Change in thickness (E - C)									
G. % Swell; Direct from Table III using C & F				17.6	6				
					SHRIN	IKAGE			
H. Height of collar above base plate (short legs) = .250				0.250	0.250				
I. Original dial reading on short legs				0.129	0.137				
J. Original thickness (H + I)									
K. Original volume in cu. Inches; Table I using J									
L. Height of collar above base plate (long legs) = 3.250				3.250	3.250				
M. Average of 4 dial readings for diameter of dry specimen				0.727	0.724				
N. Diameter of dry specimen (L + M)									
O. Area of dry specimen; From Table II using N									
P. Final dial reading on short legs				0.122	0.136				
Q. Final thickness (H + P)									
R. Volume of dry specimen (O x Q)									
S. Change in volume (K - R)									
T. % Shrinkage 100 (S ÷ K)				4.6	1.6				
				RESULTS OF	TESTS ON M	INUS 10 MES	H MATERIAL	 	
Maximum Density (pcf)				99.0	103.7				
Optimum Moisture (%)				11.9	10.3				
Percent Swell (%)				17.6	6.0				
Percent Shrinkage (%)				4.6	1.6				
Volume Change (%)				22.2	7.6				
				RESULTS OF	TESTS CALCU	LATED FOR TO	OTAL SAMPLE		
Retained on No. 10 (%)				5.7	8.8				
Maximum Density (pcf)				101.3	106.6				
Volume change (%)				21.2	7.0				
Class				IIB4	IIB3				
Tested By				MLS/SC	MLS/SC				

Project Name:		Date:	01/23/2020
Project No.:	2018089	Boring Location No.:	NB-19
Lab Assignment No.:		Offset/Depth:	15'-20'

Soil Description: Gray IIB4

Total Sample Weight = 18225 g					
Gradation of Plus No. 10					
Sieve	Accumulative	Percent of T	otal Sample		
Sieve	Weight Retained, g	Retained %	Passing %		
1 1/2"	0		100		
3/4"	15		99.9		
#10	2465		86.5		

Gradation of Minus No. 10					
Weight of 50.0-gra	n sample after drying	Weight After Elutriation= 42.40 g	(Adjusted for Total Sample Percent Passing)		
Sieve	Accumulative Weight Retained, g	Retained %	Passing %		
#40	13.90			61.9	
#60	19.70			51.6	
#200	34.20			25.9	
Clay (effluent) =	· · · · · ·		13.2	11.4	

Test Performed By	/: <u>MLS/SC</u>
Gram Scale I.D	15615026
Oven I.D.	<u>O-04</u>

Project Name:		Date:	01/28/2020
Project No.:	2018089	Boring Location No.:	NB-19
Lab Assignment No.:		Offset/Depth:	20'-25'

Soil Description:

Gray IA3

Total Sample Weight = 17985 g					
Gradation of Plus No. 10					
Sieve	Accumulative	Percent of T	otal Sample		
Sieve	Weight Retained, g	Retained %	Passing %		
1 1/2"	0		100		
3/4"	0		100		
#10	2100		88.3		

Gradation of Minus No. 10					
Weight of 50.0-gra	m sample after drying	Weight After Elutriation= 43.00 g	(Adjusted for Total Sample Percent Passing)		
Sieve	Accumulative Weight Retained, g	Retained %	Passing %		
#40	12.80			65.1	
#60	19.20			53.5	
#200	35.10			24.6	
Clay (effluent) =			11.6	10.3	

Test Performed By: ____<u>MLS/SC</u>_____

Gram Scale I.D. <u>15615026</u>

Oven I.D. <u>O-04</u>

Project Name:		Date:	01/23/2020
Project No.:	2018089	Boring Location No.:	NB-19
Lab Assignment No.:		Offset/Depth:	25'-30'

Soil Description: Gray IA3

Total Sample Weight = 12715 g					
Gradation of Plus No. 10					
Sieve	Accumulative	Percent of T	otal Sample		
Sieve	Weight Retained, g	Retained %	Passing %		
1 1/2"	0		100		
3/4"	0		100		
#10	1665		86.9		

Gradation of Minus No. 10				
Weight of 50.0-gram sample after drying = 48.57 g			Weight After Elutriation= 43.00 g	(Adjusted for Total Sample Percent Passing)
Sieve	Accumulative Weight Retained, g	Retained %	Passing %	
#40	12.60			64.4
#60	19.50			52.0
#200	35.90			22.7
Clay (effluent) =			11.5	10.0

Test Performed By	:: <u>MLS/SC</u>
Gram Scale I.D.	15615026
Oven I.D.	<u>O-04</u>

Project Name:		Date:	01/23/2020
Project No.:	2018089	Boring Location No.:	NB-20
Lab Assignment No.:		Offset/Depth:	15'-20'

Soil Description: Red IIB4

Total Sample Weight = 16775 g			
Gradation of Plus No. 10			
Siava	Accumulative	Percent of Total Sample	
Sieve	Weight Retained, g	Retained %	Passing %
1 1/2"	0		100
3/4"	10		99.9
#10	1605		90.4

Gradation of Minus No. 10				
Weight of 50.0-gram sample after drying = 47.72 g			Weight After Elutriation= 37.90 g	(Adjusted for Total Sample Percent Passing)
Sieve	Accumulative Weight Retained, g	Retained %	Passing %	
#40	10.71			70.2
#60	16.50			59.2
#200	32.81			28.3
Clay (effluent) =			20.6	18.6

Test Performed By	y: <u>MLS/SC</u>
Gram Scale I.D.	15615026
Oven I.D.	<u>O-04</u>

Project Name:		Date:	01/23/2020
Project No.:	2018089	Boring Location No.:	NB-20
Lab Assignment No.:		Offset/Depth:	20'-25'

Soil Description: Light brown IIB3

Total Sample Weight = 18165 g			
Gradation of Plus No. 10			
Siava	Accumulative	Percent of Total Sample	
Sieve	Weight Retained, g	Retained %	Passing %
1 1/2"	0		100
3/4"	15		99.9
#10	3020		83.4

Gradation of Minus No. 10				
Weight of 50.0-gram sample after drying = 46.21 g			Weight After Elutriation= 36.51 g	(Adjusted for Total Sample Percent Passing)
Sieve	Accumulative Weight Retained, g	Retained %	Passing %	
#40	10.91			63.7
#60	16.11			54.3
#200	28.62			31.8
Clay (effluent) =			21.0	17.5

Test Performed By	y: <u>MLS/SC</u>
Gram Scale I.D.	15615026
Oven I.D.	<u>O-04</u>

Project Name:		Date:	01/23/2020
Project No.:	2018089	Boring Location No.:	NB-80
Lab Assignment No.:		Offset/Depth:	10'-15'

Soil Description: Reddish brown IIB4

Total Sample Weight = 14205 g			
Gradation of Plus No. 10			
Siovo	Accumulative	Percent of Total Sample	
Sieve	Weight Retained, g	Retained %	Passing %
1 1/2"	0		100
3/4"	0		100
#10	815		94.3

Gradation of Minus No. 10							
Weight of 50.0-gra	n sample after drying	Weight After Elutriation= 26.33 g	(Adjusted for Total Sample Percent Passing)				
Sieve	Accumulative Weight Retained, g	Retained %	Passing %				
#40	2.33			89.8			
#60	4.31			86.0			
#200	15.46			64.6			
Clay (effluent) =	·	46.5	43.8				

Test Performed By	/: <u>MLS/SC</u>
Gram Scale I.D	15615026
Oven I.D.	<u>O-04</u>

Project Name:		Date:	01/23/2020
Project No.:	2018089	Boring Location No.:	NB-80
Lab Assignment No.:		Offset/Depth:	20'-25'

Soil Description:

Red IIB3

Total Sample Weight = 16410 g							
Gradation of Plus No. 10							
Sieve	Accumulative	Percent of Total Sample					
Sieve	Weight Retained, g	Retained %	Passing %				
1 1/2"	0		100				
3/4"	0		100				
#10	1440		91.2				

Gradation of Minus No. 10							
Weight of 50.0-gra	n sample after drying	Weight After Elutriation= 27.17 g	(Adjusted for Total Sample Percent Passing)				
Sieve	Accumulative Weight Retained, g	Retained %	Passing %				
#40	2.63			86.3			
#60	4.76			82.3			
#200	19.75			54.1			
Clay (effluent) =	·	44.0	40.1				

Test Performed By	/: <u>MLS/SC</u>
Gram Scale I.D	15615026
Oven I.D.	<u>O-04</u>

DOT 420

PI# 0001757

NOVA Project Number 2018089

	MOIS	TURE DENSITY	PROCTOR P	DINTS		
Boring No.	SB-18	SB-18	SB-18			
Depth	10-15	15-20	20-25			
Offset						
Dry Weight (Moisture Sample)						
% Natural Moisture	12.8%	11.1%	-			
Wt. of Mixture & Mold						
Wt. of Mold						
Wet Wt. of Mixture						
Wet Wt. per Cu. Ft.	119.1	118.8	123.1			
Dry Wt. per Cu. Ft.						
		SWI	ELL			•
A. Height of collar above base plate = .875	0.875	0.875	0.875			
B. Original dial reading	0.198	0.159	0.150			
C. Original height of specimen (A + B)						
D. Final dial reading	0.375	0.400	0.333			
E. Final height of specimen (A + D)						
F. Change in thickness (E - C)						
G. % Swell; Direct from Table III using C & F	16.5	28.3	17.9			
		SHRIN	KAGE			
H. Height of collar above base plate (short legs) = .250	0.250	0.250	0.250			•
I. Original dial reading on short legs	0.134	0.130	0.12			
J. Original thickness (H + I)						
K. Original volume in cu. Inches; Table I using J						
L. Height of collar above base plate (long legs) = 3.250	3.250	3.250	3.250			
M. Average of 4 dial readings for diameter of dry specimen	0.743	0.755	0.755			
N. Diameter of dry specimen (L + M)						
0. Area of dry specimen; From Table II using N						
P. Final dial reading on short legs	0.126	0.124	0.117			
Q. Final thickness (H + P)						
R. Volume of dry specimen (0 x Q)						
S. Change in volume (K - R)						
T. % Shrinkage 100 (S ÷ K)	2.4	1.3	0.6			
	RESULTS OF	TESTS ON MI	NUS 10 MES	H MATERIAL		
Maximum Density (pcf)	102.0	108.5	108.5			
Optimum Moisture (%)	15.6	13.5	13.5			
Percent Swell (%)	16.5	28.3	17.9			
Percent Shrinkage (%)	2.4	1.3	0.6			
Volume Change (%)	18.9	29.6	18.5			
	RESULTS OF	TESTS CALCU	ATED FOR TO	DTAL SAMPLE		
Retained on No. 10 (%)	7.2	7.3	4.4			
Maximum Density (pcf)	104.4	111.0	109.2			
Volume change (%)	17.9	27.9	17.9			
Class	IIB4	IIIC1	IIB3			
Tested By	SC	SC	SC			

DOT 420

- PI# 0001757

	MOISTURE DENSITY PROCTOR POINTS				
Boring No.		SB-30	SB-30		
Depth		10-15	15-20		
Offset					
Dry Weight (Moisture Sample)					
% Natural Moisture		14.3%	19.0%		
Wt. of Mixture & Mold					
Wt. of Mold					
Wet Wt. of Mixture					
Wet Wt. per Cu. Ft.		113.3	112.9		
Dry Wt. per Cu. Ft.					
				SWELL	
A. Height of collar above base plate = .875		0.875	0.875		
B. Original dial reading		0.167	0.152		
C. Original height of specimen (A + B)					
D. Final dial reading		0.187	0.222		
E. Final height of specimen (A + D)					
F. Change in thickness (E - C)					
G. % Swell; Direct from Table III using C & F		1.9	6.8		
				SHRINKAGE	
H. Height of collar above base plate (short legs) = .250		0.250	0.250		
 Original dial reading on short legs 		0.127	0.141		
J. Original thickness (H + I)					
K. Original volume in cu. Inches; Table I using J					
L. Height of collar above base plate (long legs) = 3.250		3.250	3.250		
M. Average of 4 dial readings for diameter of dry specimen		0.683	0.694		
N. Diameter of dry specimen (L + M)					
O. Area of dry specimen; From Table II using N					
P. Final dial reading on short legs		0.121	0.114		
Q. Final thickness (H + P)					
R. Volume of dry specimen (0 x Q)					
S. Change in volume (K - R)					
T. % Shrinkage 100 (S ÷ K)		4.9	9.5		
				RESULTS OF TESTS ON MINUS 10 MESH MATERIAL	
Maximum Density (pcf)		103.2	100.1		
Optimum Moisture (%)		10.6	16.2		
Percent Swell (%)		1.9	6.8		
Percent Shrinkage (%)		4.9	9.5		
Volume Change (%)		6.8	16.3		
				RESULTS OF TESTS CALCULATED FOR TOTAL SAMPLE	
Retained on No. 10 (%)		13.7	8.7		
Maximum Density (pcf)		107.8	103.3		
Volume change (%)		6.0	15.2		
Class		IIB4	IIB4		
Tested By		MLS/SC	MLS/SC		

Project Name:		Date:	01/28/2020
Project No.:	2018089	Boring Location No.:	SB-18
Lab Assignment No.:		Offset/Depth:	10'-15'

Soil Description:

Light brown IIB4

Total Sample Weight = 16020 g						
Gradation of Plus No. 1SB18 (10-15)0						
Sieve	Accumulative Weight Retained, g	Percent of Total Sample				
Sieve		Retained %	Passing %			
1 1/2"	1 1/2" 0		100			
3/4"	³ /4" 0		100			
#10	1155		92.8			

Gradation of Minus No. 10							
Weight of 50.0-gra	n sample after drying	Weight After Elutriation= 26.19 g	(Adjusted for Total Sample Percent Passing)				
Sieve	Accumulative Weight Retained, g	Retained %	Passing %				
#40	5.25			82.8			
#60	10.01			73.8			
#200	24.05			47.2			
Clay (effluent) =	·	46.5	43.1				

 Test Performed By:
 SC

 Gram Scale I.D.
 15615026

 Oven I.D.
 0-04

Project Name:		Date:	01/28/2020
Project No.:	2018089	Boring Location No.:	SB-18
Lab Assignment No.:		Offset/Depth:	15'-20'

Soil Description:

Grayish brown IIIC1

Total Sample Weight = 15475 g				
Gradation of Plus No. 10				
Siava	Accumulative Weight Retained, g	Percent of T	Total Sample	
Sieve		Retained %	Passing %	
1 1/2"	0		100	
3/4"	20		99.9	
#10	1135		92.7	

Gradation of Minus No. 10				
Weight of 50.0-gram sample after drying = 49.15 g Weight After Elutriation= 31.40 g (Adjusted for Total Sample Percent Passing)				
Sieve	Accumulative Weight Retained, g	Retained %	Passing %	
#40	9.76			74.3
#60	17.53			59.6
#200	29.60			36.9
Clay (effluent) =			36.1	33.5

 Test Performed By:
 SC

Gram Scale I.D. <u>15615026</u>

Oven I.D. ____<u>O-04</u>_____

Project Name:		Date:	01/28/2020
Project No.:	2018089	Boring Location No.:	SB-18
Lab Assignment No.:		Offset/Depth:	20'-25'

Soil Description:

Brown IIB3

Total Sample Weight = 15623 g				
Gradation of Plus No. 10				
Siava	Sieve Accumulative Weight Retained, g	Percent of T	Fotal Sample	
Sieve		Retained %	Passing %	
1 1/2"	0		100	
3/4"	0		100	
#10	687		95.6	

Gradation of Minus No. 10				
Weight of 50.0-gram sample after drying = 49.20 gWeight After Elutriation= 31.83 g(Adjusted for Total Sample Percent Passing)				
Sieve	Accumulative Weight Retained, g	Retained %	Passing %	
#40	11.06			74.1
#60	17.12			62.3
#200	31.00			36.1
Clay (effluent) =	·		35.3	33.7

 Test Performed By:
 SC

 Gram Scale I.D.
 15615026

 Oven I.D.
 0-04

Project Name:		Date:	01/23/2020
Project No.:	2018089	Boring Location No.:	SB-30
Lab Assignment No.:		Offset/Depth:	10'-15'

Soil Description: Brown IIB4

Total Sample Weight = 15830 g				
Gradation of Plus No. 10				
Sieve	Sieve Accumulative Weight Retained, g	Percent of T	Total Sample	
Bieve		Retained %	Passing %	
1 1/2"	0		100	
3/4"	70		99.6	
#10	2175		86.3	

Gradation of Minus No. 10				
Weight of 50.0-gram sample after drying = 47.91 g Weight After Elutriation= 24.52 g(Adjusted for Total Sample Percent Passin				
Sieve	Accumulative Weight Retained, g	Retained %	Passing %	
#40	7.40			72.9
#60	11.36			65.8
#200	20.24			49.8
Clay (effluent) =			48.8	42.1

Test Performed By	y: <u>MLS/SC</u>
Gram Scale I.D.	15615026
Oven I.D.	<u>O-04</u>

Project Name:		Date:	01/23/2020
Project No.:	2018089	Boring Location No.:	SB-30
Lab Assignment No.:		Offset/Depth:	15'-20'

Soil Description: Brown IIB4

Total Sample Weight = 16705 g				
Gradation of Plus No. 10				
Siovo	Sieve Accumulative Weight Retained, g	Percent of T	Total Sample	
Sieve		Retained %	Passing %	
1 1/2"	0		100	
3/4"	0		100	
#10	1445		91.3	

Gradation of Minus No. 10					
Weight of 50.0-gra	n sample after drying	Weight After Elutriation= 29.53 g	(Adjusted for Total Sample Percent Passing)		
Sieve	Accumulative Weight Retained, g	Retained %	Passing %		
#40	4.27			83.0	
#60	8.14			75.3	
#200	26.06			40.1	
Clay (effluent) =			36.4	33.2	

Test Performed By	y: <u>MLS/SC</u>
Gram Scale I.D.	15615026
Oven I.D.	<u>O-04</u>

Project Name:		Date:	01/28/2020
Project No.:	2018089	Boring Location No.:	SB-85
Lab Assignment No.:		Offset/Depth:	10'-15'

Soil Description: Reddish brown IIB3

Total Sample Weight = 17680 g					
	Gradation of Plus No. 10				
Sieve	Sieve Accumulative Weight Retained, g	Percent of Total Sample			
Sieve		Retained %	Passing %		
1 1/2"	0		100		
3/4"	115		99.3		
#10	2740		84.5		

Gradation of Minus No. 10					
Weight of 50.0-gra	n sample after drying	Weight After Elutriation= 30.61 g	(Adjusted for Total Sample Percent Passing)		
Sieve	Accumulative Weight Retained, g	Retained %	Passing %		
#40	1.69			81.6	
#60	4.35			77.0	
#200	20.57			49.1	
Clay (effluent) =	·	37.6	31.8		

Test Performed By	:: <u>MLS/SC</u>
Gram Scale I.D.	15615026
Oven I.D	<u>O-04</u>

Project Name:		Date:	01/28/2020
Project No.:	2018089	Boring Location No.:	SB-86
Lab Assignment No.:		Offset/Depth:	10'-15'

Soil Description: Red IIIC2

Total Sample Weight = 15090 g					
	Gradation of Plus No. 10				
Sieve	Sieve Accumulative Weight Retained, g	Percent of Total Sample			
Sieve		Retained %	Passing %		
1 1⁄2"	0		100		
3/4"	95		99.4		
#10	2075		86.2		

Gradation of Minus No. 10					
Weight of 50.0-gram	n sample after drying	Weight After Elutriation= 29.72 g	(Adjusted for Total Sample Percent Passing)		
Sieve	Accumulative Weight Retained, g	Retained %	Passing %		
#40	5.05			77.4	
#60	10.71			67.6	
#200	22.45			47.1	
Clay (effluent) =			39.9	34.4	

Test Performed By	:: <u>MLS/SC</u>
Gram Scale I.D.	15615026
Oven I.D.	<u>O-04</u>

California Bearing Ratio

BORING No.	SAMPLE DEPTH	CBR (%)		MAXIMUM DRY DENSITY	OPTIMUM
	(ft)	0.10 inches	0.20 inches	(pcf)	MOISTURE (%)
NB-19	25-30	1.7	2.4	108.0	13.6

Table C: Summary of Northbound CBR Laboratory Tests Results

SPT HAMMERS ENERGY CALIBRATIONS

TTL - 597 CME 45B (SN 307114)

Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110

Record of Standard Penetration Test Energy Calibration

For

TTL 597 – Central Mine Equipment 45B Serial # 307114

Date of Calibration: August 3, 2018

Documentation:

Page 2 – Calibration Certificate Pages 3 – Field Sheet Pages 4 to 8 – PDAS Reports

	Comparison of the second se	_	-	-	-		-	-	a –	
	ETR Standard Deviation (From PDA-S)	2.3	1.1	4				%	ge ETR % duce poor ple depth	%
	^c Energy Transfer Ratio (%) (Average ETR)	90.3%	88.4%	86.5%				88.8%	Overall Avera certain blows pro	2.17
	EFV) (fi-lbs) (fi-lbs) b ^b Average Measured	316	309.5	302.8				311.0	In some cases, c boring logs. ge Measured Ene ETR. at of Variation	:VO
	swol8 lo. of Blows Analyzed (From PDA-S)	11	11	13				red Energy:	ved N-value. shown on the feet). and the Average erall average	tatio (ETR) C
uscaloosa t County. Alabama Office Test	SPT Blow Count (blows per six inches) (From Boring Log)	4-5-6	9-9	7-8-3				^d Average Measu	elates to the obser ETR than what is : alyzer. ammer falling 2.5 ndoff. alyzed (last 1 ft) a dividing by the ov Statistical Analysis - C	^e Energy Transfer I
	Sample Depth (feet)	3.5 - 5.0	12.0-13.5	13.5 - 15.0					triving, which r evalutated for by the SPT An s (140 pound ha bles due to rour mmer blows an th (c) and then	
	Drill Rod Length (ft) (LE)	8.63	14.63	18.63				nal 1 ft of d less blows w recorded foot-pounds mber of hat sample dept	nal 1 ft of c Lless blows w recorded foot-pound: UDPLOT tal umber of ha sample dep	
T Tuscaloos TTI	Average Hammer Operation Rate (BPM)	56.8	55.7	55.4					luring the fi hay result in for each blo argy of 350 argy of 350 arge of the m ge ETR per	
	Drill Rod Size	f-WA							r impacts (gy. This n 24633-10, cal SPT end th from the ghted avera d deviation	
	Dəteə T ətad				8/3/2018				ted for hamme Aeasured Ener ed in ASTM I wy the theoreti d insignifican aking the wei d deviation fo ne the standar	8/03/2018
	Boring No. Tested				Test 2				ed and reporte Average Mod. as outling od. as outling y divided the slightly an I culated by the leulated by the transformation of the determined of the determined of the determined and the determined of the de	Date:
	Rig Operator				R.Bell				pling are average ed to calculate th on the EFV meth e Measured Ener values may diffe red Energy is ca alculating the ov :xcel was utilize	NRM
	Rig Owner				TTT				for SPT sam d were not us rgy is based c er Ratio is tht FV and ETR /erage Measu ermined by ca nction from F	pared By:
	Automatic Hammer Serial Number and Rig Model			Serial No.	CME 45B	TTL 597			^a Energy results quality data and ^b Measured Ene ^c Energy Transfi The average E. ^d The overall Av tested. ^e ETR COV dete The STDEV fu	Calibration Pre

Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery. Alabama 36110

DCN: 01

Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110

RECORD OF SPT ENERGY MEASUREMENTS

Project Name:	176	Rig Make / Model:	CME45B
Location:	TTL office	Rig I.D.:	TTL 597
Date:	8.3-18	Hammer Serial No.:	307/14
SPT Inspector:	NoMaxwel	Hammer Type:	A440
Drilling Company:	TTL	Rod Size:	AWT

Boring Identification:	Test 2 ho
Geologic Region:	Tuscaloosa
Time Tested:	8:30 AM
Drill Rig Operator:	R Bell
SPT Analyzer Serial Number:	4500 TB
Instrumented Rod Type / Area:	1,17:n ²
Accelerometer Serial Number:	A1: K5260 A2: K5299
Accelerometer Calibration Factor:	A1: 314,0 A2: 328.0
Strain Gage Serial Number:	A1: 453AWJ-1 A2: 453AWJ-2
Strain Gage Calibration Factors:	A1: 206,42 A2: 206,54

Analyzer File Name (Boring No. plus Sub designation)	Rod Length (FT)	Measured S.U. (FT)	Calculated Start Depth (FT)	Hammer Blow Counts (Provided By Others)	Increment	Misc. Comments
1	2.83+0.9		3.5	4	6in	
p2 - 1	1.07 3.0		200	5	12in	
	0.63		(3.7-5.0)	6	18in	
14	3.63+9		7.0	6	6in	To close
DZ _ 2	10/2			9	12in	To ganges
	12.67		(7.0 - 2.0)		18in	
	3.63+10		8.5	8	6in	2
h2 3	1212				12in	
<i>D</i> = + 7	12.62		(6,5-10,0)	11	18in	
1	3,63+9.00	a 14.0	12.0	7	6in	Toclose
02.4	17-63			9	12in	To gauge a
	1000		(12,0-13.0)		18in	~
I m	3.63+19.0		13,5	7	6in	
b2-9	18,53		in a ic	8	12in	
			13,2-12.0 1	3	18in	
	3.63+20		18,9	hah	6in	
h2 6	72 . 0			/	12in	Omit
/	27163		1185-20.01	2	18in	

*Rod Length: Total From Gages to Tip of Sampler

*Measured S.U.: Measured Drill Rod Stick Up From Ground Surface To Location of Gages DCN:01

Instrument Subassembly Length: ____2ft____

Pile Dynamics, Inc. SPT Analyzer Results

Page 1 of 5 PDA-S Ver. 2015.14 - Printed: 8/6/2018

TTL45b 597		b2_1
NM		Test date: 8/3/2018
AR: 1.17	in^2	SP: 0.492 k/ft3
LE: 8.63	ft	EM: 30000 ksi
WS: 16807.	ft/s	

FMX: Maximum Force				EFV:	Maximum Energy	
VMX: Maximum Veloci	ty			ETR:	Energy Transfer R	atio - Rated
BPM: BIOWS/MINUTE	BC	EMY	VANY	DDM	EEV/	CTD
DLI	16"	kine	file	brim		E1R
8	5	25 940	20.1	opin Fe e	11-10	(%)
0	5	25.640	20.1	50.0	310.9	88.8
9	5	25.904	19.5	57.1	321.8	91.9
10	5	25.689	19.9	56.5	312.1	89.2
11	5	25.533	19.7	57.0	310.6	88.8
12	5	26.595	19.9	56.7	336.9	96.3
13	6	25.734	19.8	57.0	312.1	89.2
14	6	26.216	19.8	56.7	322.8	92.2
15	6	25.581	19.7	56.8	318.3	90.9
16	6	25.709	19.9	57.3	310.1	88.6
17	6	25.381	19.5	56.4	310.5	88.7
18	6	25.936	20.2	56.6	309.9	88.5
	Average	25.829	19.8	56.8	316.0	90.3
	Std Dev	0.323	0.2	0.3	8.0	2.3
	Maximum	26.595	20.2	57.3	336.9	96.3
	Minimum	25.381	19.5	56.4	309.9	88.5
		N-1	value: 11			

Sample Interval Time: 10.56 seconds.

Page 2 of 5 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

TTL45b 597 NM		b2_1 Test date: 8/3/2018
AR: 1.17	in^2	SP: 0.492 k/ft3
LE: 12.63	ft	EM: 30000 ksi
WS: 16807.9	I ft/s	

		Depth: (7.00 - 8.0	00 ft], displaying BN	1: 36		
F@12 63 ft (50.000 kip V@12 63 ft (23.9 ft/s)						A2,4 F1,3
15: 200 TB: 0 BL#	BC /6"	FMX kips	VMX ft/s	BPM	EFV ft-lb	ETR (%)
29	8	25.899	19.8	55.9	327.6	93.6
30	8	25.203	19.4	55.5	321.4	91.8
31	8	25.332	19.4	55.9	322.4	92.1
32	8	25.469	19.4	55.4	316.3	90.4
33	8	25.739	19.6	55.7	309.4	88.4
34	8	25.826	19.5	55.8	311.2	88.9
35	8	25.432	19.2	55.4	316.0	90.3
36	8	25.611	19.6	55.6	320.7	91.6
37	2	25.547	19.3	55.7	321.5	91.8
38	2	25.703	19.4	55.5	309.4	88.4
	Average	25.576	19.5	55.6	317.6	90.7
	Std Dev	0.210	0.2	0.2	5.8	1.7
	Maximum	25.899	19.8	55.9	327.6	93.6
	Minimum	25.203	19.2	55.4	309.4	88.4
		N-1	value: 10			

Sample Interval Time: 9.66 seconds.

Page 3 of 5 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

TTL45b 597 NM		b2_1 Test date: 8/3/2018
AR: 1.17	in^2	SP: 0.492 k/ft3
LE: 12.63	ft	EM: 30000 ksi
WS: 16807.9	ft/s	

Sample Interval Time: 10.76 seconds.

Page 4 of 5 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

TTL45b 597		b2_1
NM		Test date: 8/3/2018
AR: 1.17	in^2	SP: 0.492 k/ft3
LE: 18.63	ft	EM: 30000 ksi
WS: 16807.9	ft/s	107755 5

Sample Interval Time: 13.03 seconds.

Pile Dynamics, Inc. SPT Analyzer Results Page 5 of 5 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Summary of SPT Test Results

MX: Maximum Force /MX: Maximum Velocity						E	FV: Maximum Energ TR: Energy Transfer	ly Ratio - Rated
Instr Length	Blows Applied /6"	N Value	N60 Value	Average FMX kips	Average VMX ft/s	Average BPM bpm	Average EFV ft-lb	Average ETR (%)
8.63	5-6	6	8	25.829	19.8	56.8	316.0	90.3
12.63	8-2	2	2	25.576	19.5	55.6	317.6	90.7
12.63	11-0	0	0	25.057	18.4	55.7	309.5	88.4
18.63	10-3	3	4	25.090	19.0	55.4	302.8	86.5
		Overall Ave	rage Values:	25.371	19.2	55.9	311.0	88.8
	Standard Deviation:		rd Deviation:	0.427		0.6	11.0	3.1
	Overall Maximum Value:	imum Value:	26 595	20.2	57.3	336.9	96.3	
		Overall Min	imum Value:	24.318	17.9	55.2	269.3	76.9

TTL - 619 CME 45B (SN 317534)

Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110

Record of Standard Penetration Test Energy Calibration

For

TTL 619 – Central Mine Equipment 45B Serial # 317534

Date of Calibration: August 3, 2018

Documentation:

Page 2 – Calibration Certificate Pages 3 – Field Sheet Pages 4 to 11 – PDAS Reports

	ETR Standard Deviation (From PDA-S)	1.9	1.2	2.2	2.1	2			3			ETR %	tce poor			e depth			
	^c Energy Transfer Ratio (%) (Average ETR)	84.7%	81.2%	82.5%	84.3%	83.9%					83.5%	Overall Average	ertain blows produ			rgy for each sampl			1.75 %
	^b Average Measured Energy (Average ^b Average Measured	296.4	284.1	288.6	295.1	293.5				292.4 292.4 a some cases, c oring logs. Measured Ene TR.	ETR.	t of Variation	0V: 1						
	swol 8 lows Analyzed (From PDA-S)	22	17	8	20	23					red Energy:	ed N-value. I lown on the b	et). d the Averag rall average F	srall average I	verall Coefficien	atio (ETR) C			
iscaloosa County. Alabama Office Test	Punt SPT Blow Count (blows per six inches) (From Boring Log)	4 - 8 - 15	7-9-10	8 - 4 - 5	11 - 10 - 6	12 - 14 - 9					^d Average Measur		elates to the observ ETR than what is s	alyzer.	ummer falling 2.5 f	ıdoff. alyzed (last 1 ft) ar	dividing by the ove	Statistical Analysis - O	^e Energy Transfer R
	Sample Depth (feet)	3.5 - 5.0	7.0 - 8.5	8.5 - 10.0	12.0 - 13.5	13.5 - 15.0							riving. which r evalutated for	by the SPT An	(140 pound ha	oles due to rour nmer blows an	th (c) and then		
	(ft) Argen Length (ft) (LE)	8.63	13.63	13.63	18.63	18.63							nal 1 ft of d less blows	w recorded	oot-pounds	JIPLOT tat mber of har	sample dept		
T Tuscaloos TTI	Average Hammer (M98) Areration Rate (BPM)	50.5 50.7 50.7 50.8 50.8 50.8 50.8 50.8 50.8 in the fir in the Plov regy of 350 f is e in the PL ge of the nur								e ETR per :									
	Drill Rod Size	l-WA											r impacts d gy. This m	04633-10, f	al SPT ene	ly from tho ghted avera	the averag		
	Date Tested	8/3/2018											ed for hamme feasured Ener	ed in ASTM I	y the theoretic	l insignificant aking the weig	d deviation for		8/03/2018
	Boring No. Tested					Test 3							d and report e Average N	od, as outlin	gy divided b	r slightly an culated by t	erall standar I to determin		Date:
	Rig Operator	R.Bell											oling are average d to calculate th	n the EFV metho	Measured Energy	values may diffe ed Energy is cal	Iculating the ow seel was utilized		NRM
	Rig Owner					TTL							for SPT sample were not use	gy is based o	r Ratio is the	"V and ETR	armined by ca action from E		oared By:
	Automatic Hammer Serial Number and Rig Model			- Minima	21753/	CMF 45R	TTL 619						^a Energy results quality data and	^b Measured Ener	"Energy Transfe	The average EI ^d The overall Av tested.	"ETR COV dete The STDEV fur		Calibration Prep

Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery. Alabama 36110

DCN: 01

Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110

RECORD OF SPT ENERGY MEASUREMENTS

Project Name:	T+1_	Rig Make / Model:	CME 45B
Location:	TTL office	Rig I.D.:	TTL 619
Date:	8-3=18	Hammer Serial No.:	317534
SPT Inspector:	NAMAXWe	Hammer Type:	Auto
Drilling Company:	TTL	Rod Size:	AWT

Boring Identification:	Tex+ 3 63
Geologic Region:	Tuscalosa
Time Tested:	9:30
Drill Rig Operator:	R. Bell
SPT Analyzer Serial Number:	4500 TB
Instrumented Rod Type / Area:	1.17in2
Accelerometer Serial Number:	A1: K5260 A2: K5259
Accelerometer Calibration Factor:	A1: 3/4.0 A2: 328.0
Strain Gage Serial Number:	A1: 453ANJ-1 A2: 453ANJ-2
Strain Gage Calibration Factors:	A1: 206,42 A2: 206,54

Analyzer File Name (Boring No. plus Sub designation)	Rod Length (FT)	Measured S.U. (FT)	Calculated Start Depth (FT)	Hammer Blow Counts (Provided By Others)	Increment	Misc. Comments
• CATCERNIAN - MA 14	2.8340.8		3.5	4	6in	
b3-1	3.63+9			8	12in	
	8,63	la ser en en este se	(3.5-9.9)	15	18in	
	3.634 10.0		7.0	7	6in	
b3.2	13.63			9	12in	
-			(7.0 - 8.5)	19	18in	
	3.63+10.0		8.5	8	6in	
h3. 3	1215			4	12in	
· ·	12.02		18,5-12.01	5'	18in	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.63+15.0		12.0		6in	
64.4	1010			10	12in	
	10.03		(12.0 - (3.5))	6	18in	
100	3.63-15.0		19.5	12	6in	
65, 7	19.12		120-10-	14	12in	
	10.01		(12.7-15,0)	9	18in	<i>i</i>
					6in	
					12in	
			()		18in	

*Rod Length: Total From Gages to Tip of Sampler *Measured S.U.: Measured Drill Rod Stick Up From Ground Surface To Location of Gages DCN:01

1 1

Instrument Subassembly Length:____2ft____

Page 1 of 8 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

TTL45b 619 NM	b 3_1 Test date: 8/3/2018
AR: 1.17 in^2	SP: 0.492 k/ft3
LE: 8.63 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

FMX: Maximum Force	K: Maximum Force			EFV: Maximum Energy			
VMX: Maximum Velocity				ETR:	Energy Transfer R	atio - Rated	
BPM: Blows/Minute					1011 - 1011 - 1011 - 1011 - 1011 - 1011 - 1011 - 1011 - 1011 - 1011 - 1011 - 1011 - 1011 - 1011 - 1011 - 1011 -		
BL#	BC	FMX	VMX	BPM	EFV	ETR	
	/6"	kips	ft/s	bpm	ft-lb	(%	
8	8	26.102	19.4	50.7	290.3	82.9	
9	8	25.983	19.3	50.5	290.0	82.9	
10	8	26.354	19.5	50.5	293.9	84.0	
11	8	25.576	19.5	50.6	289.9	82.8	
12	8	25.889	19.7	50.7	292.7	83.6	
13	8	26.013	19.5	50.5	291.9	83.4	
14	8	25.969	19.7	50.4	298.8	85.4	
15	8	25.536	19.6	50.5	312.9	89.4	
16	14	26.009	19.7	50.7	282.7	80.8	
17	14	25.521	19.7	50.5	292.8	83.7	
18	14	25.574	19.6	50.5	293.2	83.8	
19	14	25.254	19.5	50.8	291.0	83.1	
20	14	25.377	19.4	50.4	293.5	83.9	
21	14	25.803	19.7	50.4	297.4	85.0	
22	14	25.448	19.4	50.6	298.8	85.4	
23	14	25.546	19.4	50.3	298.1	85.2	
24	14	25.322	19.4	50.4	300.2	85.8	
25	14	25.164	19.3	50.4	298.1	85.2	
26	14	25.656	19.4	50.5	303.9	86.8	
27	14	25.279	19.3	50.5	300.9	86.0	
28	14	25.551	19.1	50.4	305.7	87.3	
29	14	25.844	19.3	50.5	304.7	87.1	
	Average	25.671	19.5	50.5	296.4	84.7	
	Std Dev	0.309	0.2	0.1	6.5	1.9	
	Maximum	26.354	19.7	50.8	312.9	89.4	
	Minimum	25.164	19.1	50.3	282.7	80.8	
		N-1	value: 22				

N-Value. 22

Sample Interval Time: 24.91 seconds.

Page 2 of 8 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

TTL45b 619		b 3_1
NM		Test date: 8/3/2018
AR: 1.17	in^2	SP: 0.492 k/ft3
LE: 13.63	ft	EM: 30000 ksi
WS: 16807.9	ft/s	

BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	(%)
42	11	24 613	19.8	50.4	287.6	82.2
43	1.1	24.891	19-1	50.4	286.4	81.8
44	11	24.882	19.3	50.7	279.8	0.08
45	11	24 789	19.6	50.5	280.8	80.2
46	11	24 907	19.5	50.4	280.3	80.1
47	11	25.736	19.7	50.6	290.8	83 1
48	11	24 997	19.0	50.5	281.5	80.4
45)	11	24 966	19.5	50.4	278.6	79.6
50	11	25.908	19.3	50.5	291 3	83.2
51	11	24.658	19.3	50 4	276.8	791
52	11	24.308	17.8	50.6	287.3	82.1
53	8	25.566	19.6	50.4	289.0	82.6
54	8	24.431	18.5	50.4	287.1	82.0
55	8	24.914	19.0	50.4	287.2	82.1
56	8	25.197	19.4	50.5	281.4	80.4
57	8	24.247	17.9	50.5	288.6	82.5
58	8	24.722	19.2	50.6	283.2	80.9
59	8	24.757	18.4	50.4	283.4	81.0
60	8	24.885	18.7	50.4	282.1	80.6
61	9	24.772	18.8	50.5	280.6	80.2
65	9	20.581	22.2	41.1	277.6	79.3
66	9	23.006	21.2	4.0	287.0	82.0
67	9	23.268	21.3	50.5	290.8	83.1
68	9	22.990	21.0	50.8	277.2	79.2
69	9	23.001	21.0	50.6	284.6	81.3
70	9	23.476	20.9	50.5	287.5	82.1
71	9	23.376	20.8	50.8	285.4	81.5
72	9	23.421	21.1	50.7	276.9	79.1
	Average	23.918	19.9	47.2	284.1	81.2
	Std Dev	1.177	1.3	11.0	4.2	1.2
	Maximum	25.566	22.2	50.8	290.8	83.1
	Minimum	20.581	17.9	4.0	276.9	79.1
		(Col 2007)				

N-value: 17

Pile Dynamics, Inc. SPT Analyzer Results Page 3 of 8 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Sample Interval Time: 279.16 seconds.

Page 4 of 8 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

TTL45b 619		b 3_1
NM		Test date: 8/3/2018
AR: 1.17	in^2	SP: 0.492 k/ft3
LE: 13.63	ft	EM: 30000 ksi
WS: 16807.9	ft/s	

		Depth: (8.50 - 9.	50 ft], displaying BN	1:78		
F@1363 ft (50.000 kip V@1363 ft (23.9 ft/s)	s)					A2.4 F1,3
BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	(%)
	5	23.428	20.9	50.7	295.2	84.3
74	5	23.641	20.9	50.7	290.9	83.1
75		23.406	20.9	50.6	288.6	82.5
76 77 78 79	5 5 3	23.335 23.544 23.540 23.480	20.7 21.1 20.8 20.8	50.6 50.9 50.4 51.1	295.4 280.3 281.2 277 9	84.4 80.1 80.3 79.4
80	3	23.356	21.0	50.5	299.7	85.6
	Average	23.466	20.9	50.7	288.6	82.5
	Std Dev	0.098	0.1	0.2	7.6	2.2
	Maximum	23.641	21.1	51.1	299.7	85.6
	Minimum	23.335	20.7	50.4	277.9	79.4
		IN-	value. o			

Sample Interval Time: 8.28 seconds.

Page 5 of 8 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

TTL45b 619		b 3_1
NM		Test date: 8/3/2018
AR: 1.17	in^2	SP: 0.492 k/ft3
LE: 18.63	ft	EM: 30000 ksi
WS: 16807.9	ft/s	

Depth: (12.00 - 13.50 ft], dis	playing BN: 126
F@18 63 ft (50.000 kips) V@18 63 ft (23.9 ft/s)	A2,4 F1,3
TS: 200 TB: 0	

66" kips ft/s bpm ft-lb (%) 96 10 25.323 19.2 50.7 300.3 85.8 97 10 25.382 19.2 50.8 296.5 84.3 98 10 25.775 19.3 50.7 295.5 84.4 99 10 24.409 18.9 51.0 301.4 86.1 100 10 24.700 19.3 50.7 299.3 85.5 101 10 24.903 19.3 50.8 298.7 85.4 102 10 25.340 19.0 50.8 309.1 86.3 103 10 24.661 19.4 50.6 307.4 87.9 105 10 25.124 19.0 50.7 297.6 85.7 106 6 24.09 19.3 50.8 248.3 81.2 108 6 24.675 18.3 51.0 310.9 88.8	BL#	BC	FMX	VMX	BPM	EFV	ETR
96 10 26.323 19.2 50.7 300.3 85.8 97 10 25.382 19.2 50.6 296.5 85.3 98 10 25.275 19.3 50.7 295.5 84.4 99 10 25.499 18.9 51.0 301.4 86.1 100 10 24.700 19.3 50.6 299.3 85.5 101 10 24.903 19.3 50.8 309.1 86.3 102 10 25.340 19.0 50.8 309.1 86.3 103 10 24.661 19.4 50.9 307.4 87.8 104 10 25.422 19.0 50.7 297.6 85.0 105 10 25.192 19.4 50.8 284.3 81.2 106 6 25.09 17.1 50.7 304.1 86.8 109 6 23.192 17.1 50.7 304.1		/6"	kips	ft/s	bpm	ft-lb	(%)
97 10 25 382 19 2 50 8 296 5 85 3 98 10 25 275 19 3 50 7 295 5 84 4 99 10 25 449 18 9 51 1 301 4 46 1 100 10 24 700 19 3 50 7 299 3 85 5 101 10 24 603 19 3 50 8 208 7 85 4 102 10 25 340 19 0 50 8 300 1 86 3 103 10 24 661 19 4 50 9 307 4 87 8 104 10 25 422 19 0 50 7 297 6 85 0 105 10 25 124 19 2 50 9 290 8 85 7 106 6 25 09 19 3 50 8 284 3 81 2 108 6 24 67 5 18 3 51 0 310 9 88 8 109 6 23 192 17 4 50 7 304 1	96	10	25.323	19.2	50 7	300.3	85.8
98 10 25 275 19 3 50.7 295 5 84 4 99 10 25 449 18.9 51.0 301 4 86 1 100 10 24 700 19.3 50.7 299.3 85.5 101 10 24 903 19.3 50.8 298.7 85.4 102 10 25.340 19.0 50.8 309.1 86.3 103 10 24.661 19.4 50.9 307.4 87.8 104 10 25.422 19.0 50.7 297.6 85.0 105 10 25.192 19.4 50.8 290.2 82.9 106 6 25.099 19.3 50.8 290.2 82.9 107 6 23.192 17.4 50.9 282.5 80.7 110 6 22.468 17.1 50.8 295.5 84.4 111 6 23.269 17.1 50.8 295.5	97	10	25 382	19.2	50 8	298.5	85.3
99 10 25 449 18 9 51.0 301.4 86 1 100 10 24 700 19.3 50.7 299.3 85.5 101 10 24 903 19.3 50.8 288.7 85.4 102 10 25.340 19.0 50.8 309.1 86.3 103 10 24 661 19.4 50.9 307.4 87.8 104 10 25.422 19.0 50.7 297.6 85.0 105 10 25.124 19.2 50.9 299.8 85.7 106 6 25.09 19.3 50.8 284.3 81.2 107 6 25.192 17.4 50.9 282.5 80.7 110 6 23.462 17.1 50.7 295.8 84.5 111 6 23.269 17.1 50.7 295.8 84.5 112 14 22.944 17.0 51.0 302.9	98	10	25 275	19.3	50.7	295 5	84.4
100 10 24 700 19.3 50 7 299.3 35.5 101 10 24 903 19.3 50.8 208.7 85.4 102 10 25.340 19.0 50.8 309.1 86.3 103 10 24 661 19.4 50.9 307.4 87.8 104 10 25 422 19.0 50.7 297.6 85.0 105 10 25 124 19.2 50.9 290.8 85.7 106 6 25.09 19.3 50.8 284.3 81.2 107 6 23.192 17.4 50.9 282.5 80.7 109 6 23.192 17.4 50.8 285.5 84.4 110 6 22.963 17.1 50.7 304.1 86.9 112 14 22.983 17.2 50.7 304.1 86.9 113 14 26.467 19.4 27.6 279.9	99	10	25.449	18.9	51.0	301.4	86-1
101 10 24 903 19.3 50.8 298.7 85.4 102 10 25.340 19.0 50.8 309.1 86.3 103 10 24.661 19.4 50.9 307.4 87.8 104 10 25.422 19.0 50.7 297.6 85.0 105 10 25.124 19.2 50.9 299.8 85.7 106 6 25.09 19.3 50.8 284.3 81.2 107 6 25.192 19.4 50.8 284.3 81.2 108 6 24.675 18.3 51.0 310.9 88.8 109 6 23.192 17.4 50.9 282.5 80.7 110 6 22.468 17.1 50.7 304.1 86.9 111 14 22.983 17.2 50.7 304.1 86.9 113 14 26.457 19.4 27.6 279.9	100	10	24.700	19.3	50.7	299.3	85.5
102 10 25.340 19.0 50.8 309.1 86.3 103 10 24.661 19.4 50.9 307.4 87.8 104 10 25.62 19.0 50.7 297.6 85.0 105 10 25.124 19.2 50.9 290.8 85.7 106 6 25.009 19.3 50.8 280.2 82.9 107 6 25.192 19.4 50.8 284.3 81.2 108 6 24.675 18.3 51.0 310.9 88.8 109 6 23.192 17.4 50.8 285.5 84.4 111 6 23.269 17.1 50.7 295.8 84.5 112 14 22.983 17.2 50.7 304.1 86.9 113 14 22.944 17.0 51.0 302.9 86.5 117 14 26.679 19.6 50.6 299.5	101	10	24.903	19.3	50.8	298 7	85.4
103 10 24 661 19.4 50.9 307.4 87.8 104 10 25 422 19.0 50.7 297.6 85.0 106 6 25.09 19.3 50.8 290.2 82.9 107 6 25.192 19.4 50.8 284.3 81.2 108 6 24.675 18.3 51.0 310.9 88.8 109 6 23.192 17.4 50.9 282.5 80.7 110 6 22.468 17.1 50.8 295.5 84.4 111 6 23.269 17.1 50.7 295.8 84.5 112 14 22.983 17.2 50.7 304.1 86.9 113 14 22.944 17.0 51.0 302.9 86.5 117 14 26.457 19.4 27.6 279.9 80.0 118 14 26.679 19.6 50.6 299.5	102	10	25.340	19.0	50.8	309 1	88.3
104 10 25 422 19 0 50 7 297 6 85 0 105 10 25 124 19 2 50 9 299 8 85 7 106 6 25 009 19 3 50 8 290 2 82 9 107 6 25 192 19 4 50 8 284 3 81 2 108 6 24 67 5 18 3 51 0 310 9 88 8 109 6 23 192 17 4 50 9 282 5 80 7 110 6 22 468 17 1 50 7 295 8 84 5 112 14 22 983 17 2 50 7 304 1 86 9 113 14 22 944 17 0 51 0 302 9 86 5 117 14 26 457 19 4 27 6 27 9 9 80 0 118 14 26 485 19 3 2 9 29 7 3 84 9 120 14 26 67 9 19 6 50 6 299 5	103	10	24 661	19.4	50.9	307.4	87.8
105 10 25 124 19.2 50.9 299.8 85.7 106 6 25.009 19.3 50.8 290.2 82.9 107 6 25.192 19.4 50.8 284.3 81.2 108 6 24.675 18.3 51.0 310.9 88.8 109 6 23.192 17.4 50.9 282.5 80.7 110 6 22.468 17.1 50.7 295.8 84.5 112 14 22.983 17.2 50.7 304.1 86.9 113 14 22.944 17.0 51.0 302.9 86.5 117 14 26.457 19.4 27.6 279.9 80.0 118 14 26.457 19.4 27.6 299.5 85.6 120 14 25.962 18.9 50.8 294.7 84.2 122 14 26.679 19.4 50.7 299.6	104	10	25 422	19.0	50.7	297.6	85.0
106 6 25.009 19.3 50.8 290.2 82.9 107 6 25.192 19.4 50.8 284.3 81.2 108 6 24.675 18.3 51.0 310.9 88.8 109 6 23.192 17.4 50.8 295.5 84.4 110 6 22.468 17.1 50.7 295.8 84.5 112 14 22.983 17.2 50.7 304.1 86.9 113 14 22.944 17.0 51.0 302.9 86.5 117 14 26.457 19.4 27.6 279.9 80.0 118 14 26.485 19.3 2.9 297.3 84.9 119 14 26.679 19.6 50.6 299.5 85.6 120 14 26.132 19.7 50.9 296.9 84.8 123 14 26.132 19.7 50.9 299.6	105	10	25.124	19.2	50.9	299.8	85.7
107 6 25.192 19.4 50.8 284.3 81.2 108 6 24.675 18.3 51.0 310.9 88.8 109 6 23.192 17.4 50.9 282.5 80.7 110 6 22.468 17.1 50.7 295.8 84.5 112 14 22.983 17.2 50.7 304.1 86.9 113 14 22.944 17.0 51.0 302.9 86.5 117 14 26.457 19.4 27.6 279.9 80.0 118 14 26.679 19.6 50.6 299.5 85.6 120 14 25.962 18.9 50.8 285.1 81.5 121 14 26.132 19.7 50.9 296.9 84.8 123 14 26.300 19.4 50.7 298.1 85.2 125 14 26.301 19.4 50.9 294.7	106	6	25.009	19.3	50.8	290.2	82.9
108 6 24.675 18.3 51.0 310.9 88.8 109 6 23.192 17.4 50.9 282.5 80.7 110 6 22.468 17.1 50.8 295.5 84.4 111 6 23.269 17.1 50.7 295.8 84.5 112 14 22.983 17.2 50.7 304.1 86.9 113 14 22.944 17.0 51.0 302.9 86.5 117 14 26.457 19.4 27.6 279.9 80.0 118 14 26.457 19.3 2.9 297.3 84.9 119 14 26.679 19.6 50.6 299.5 85.6 120 14 26.962 18.9 50.8 285.1 81.5 121 14 26.132 19.7 50.9 296.9 84.8 123 14 26.300 19.4 50.7 298.1	107	6	25.192	19.4	50.8	284.3	81.2
109 6 23.192 17.4 50.9 282.5 80.7 110 6 22.468 17.1 50.8 295.5 84.4 111 6 23.269 17.1 50.7 295.8 84.5 112 14 22.983 17.2 50.7 304.1 86.9 113 14 22.984 17.0 51.0 302.9 86.5 117 14 26.457 19.4 27.6 279.9 80.0 118 14 26.485 19.3 2.9 297.3 84.9 119 14 26.679 19.6 50.6 299.5 85.6 120 14 25.962 18.9 50.8 294.7 84.2 121 14 26.132 19.7 50.9 296.9 84.8 123 14 26.30 19.4 50.7 298.1 852 125 14 26.230 19.4 50.9 299.7	108	6	24.675	18.3	51.0	310.9	88.8
110 6 22.468 17.1 50.8 295.5 84.4 111 6 23.269 17.1 50.7 295.8 84.5 112 14 22.983 17.2 50.7 304.1 86.9 113 14 22.944 17.0 51.0 302.9 86.5 117 14 26.485 19.3 2.9 297.3 84.9 118 14 26.485 19.3 2.9 297.3 84.9 118 14 26.679 19.6 50.6 299.5 85.6 120 14 25.962 18.9 50.8 285.1 81.5 121 14 26.132 19.7 50.9 296.9 84.8 123 14 26.380 19.4 50.7 298.1 85.2 124 14 26.540 19.5 50.7 298.1 85.2 125 14 26.361 19.3 50.8 292.7	109	6	23.192	17.4	50.9	282.5	80.7
111 6 23.269 17.1 50.7 295.8 84.5 112 14 22.983 17.2 50.7 304.1 86.9 113 14 22.944 17.0 51.0 302.9 86.5 117 14 26.457 19.4 27.6 279.9 80.0 118 14 26.6485 19.3 2.9 297.3 84.9 119 14 26.679 19.6 50.6 299.5 85.6 120 14 25.962 18.9 50.8 285.1 81.5 121 14 26.6132 19.7 50.9 296.9 84.8 122 14 26.380 19.4 50.7 298.1 85.2 122 14 26.380 19.4 50.7 298.1 85.2 123 14 26.300 19.4 50.9 299.7 85.6 124 14 26.301 19.3 50.8 292.7 83.6 125 14 26.361 19.3 50.8 292.7 <td>110</td> <td>6</td> <td>22.468</td> <td>17.1</td> <td>50.8</td> <td>295.5</td> <td>84.4</td>	110	6	22.468	17.1	50.8	295.5	84.4
112 14 22.983 17.2 50.7 304.1 86.9 113 14 22.944 17.0 51.0 302.9 86.5 117 14 26.457 19.4 27.6 279.9 80.0 118 14 26.457 19.4 27.6 279.9 80.0 118 14 26.679 19.6 50.6 299.5 85.6 120 14 26.679 19.6 50.8 285.1 81.5 121 14 26.141 19.5 50.8 294.7 84.2 122 14 26.380 19.4 50.7 299.6 85.6 122 14 26.380 19.4 50.7 298.1 85.2 123 14 26.300 19.4 50.9 299.7 85.6 124 14 26.301 19.3 50.8 292.7 83.6 125 14 26.347 19.5 50.8 297.7	111	6	23.269	17.1	50.7	295.8	84.5
113 14 22.944 17.0 51.0 302.9 86.5 117 14 26.457 19.4 27.6 279.9 80.0 118 14 26.485 19.3 2.9 297.3 84.9 119 14 26.679 19.6 50.6 299.5 85.6 120 14 25.962 18.9 50.8 285.1 81.5 121 14 26.132 19.7 50.9 296.9 84.8 122 14 26.380 19.4 50.7 299.6 85.6 123 14 26.380 19.4 50.7 298.1 85.2 124 14 26.301 19.4 50.9 299.7 85.6 125 14 26.301 19.4 50.9 299.7 85.6 125 14 26.31 19.3 50.8 292.7 83.6 126 14 26.320 19.5 50.8 294.5	112	14	22.983	17.2	50.7	304.1	86.9
117 14 26.457 19.4 27.6 279.9 80.0 118 14 26.485 19.3 2.9 297.3 84.9 119 14 26.679 19.6 50.6 299.5 85.6 120 14 25.962 18.9 50.8 285.1 81.5 121 14 26.132 19.7 50.9 296.9 84.8 122 14 26.380 19.4 50.7 299.6 85.6 123 14 26.380 19.4 50.7 298.1 85.2 124 14 26.630 19.4 50.9 299.7 85.6 124 14 26.640 19.5 50.7 298.1 85.2 125 14 26.630 19.4 50.9 299.7 85.6 126 14 26.347 19.5 50.8 297.7 85.6 128 14 26.250 19.5 50.8 294.5	113	14	22.944	17.0	51.0	302.9	86.5
118 14 26.485 19.3 2.9 297.3 84.9 119 14 26.679 19.6 50.6 299.5 85.6 120 14 25.962 18.9 50.8 285.1 81.5 121 14 26.141 19.5 50.8 294.7 84.2 122 14 26.132 19.7 50.9 296.9 84.8 123 14 26.380 19.4 50.7 299.6 85.6 124 14 26.640 19.5 50.7 298.1 85.2 125 14 26.230 19.4 50.9 299.7 85.6 125 14 26.312 19.3 50.8 292.7 85.6 126 14 26.361 19.3 50.8 297.7 85.1 128 14 26.250 19.5 50.8 294.5 84.3 128 14 26.250 19.5 50.8 295.1	117	14	26.457	19.4	27.6	279.9	80.0
119 14 26.679 19.6 50.6 299.5 85.6 120 14 25.962 18.9 50.8 285.1 81.5 121 14 26.141 19.5 50.8 294.7 84.2 122 14 26.132 19.7 50.9 296.9 84.8 123 14 26.380 19.4 50.7 299.6 85.6 124 14 26.540 19.5 50.7 298.1 85.2 125 14 26.301 19.4 50.9 299.7 85.6 126 14 26.361 19.3 50.8 292.7 85.6 126 14 26.361 19.3 50.8 294.5 84.2 128 14 26.250 19.5 50.8 294.5 84.3 128 14 26.250 19.5 50.8 295.1 84.3 Std Dev 1.435 1.0 11.4 7.5 2.1	118	14	26.485	19.3	2.9	297.3	84.9
120 14 25.962 18.9 50.8 285.1 81.5 121 14 26.141 19.5 50.8 294.7 84.2 122 14 26.132 19.7 50.9 296.9 84.8 123 14 26.380 19.4 50.7 299.6 85.6 124 14 26.540 19.5 50.7 298.1 85.2 125 14 26.230 19.4 50.9 299.7 85.6 126 14 26.361 19.3 50.8 292.7 83.6 127 14 26.347 19.5 50.8 294.5 84.2 128 14 26.250 19.5 50.8 294.5 84.2 128 14 26.250 19.5 50.8 294.5 84.2 128 14 26.265 18.8 47.3 295.1 84.3 Std Dev 1.435 1.0 11.4 7.5 2.1	119	14	26.679	19.6	50.6	299.5	85.6
121 14 26.141 19.5 50.8 294.7 84.2 122 14 26.132 19.7 50.9 296.9 84.8 123 14 26.380 19.4 50.7 299.6 85.6 124 14 26.540 19.5 50.7 298.1 85.2 125 14 26.230 19.4 50.9 299.7 85.6 126 14 26.361 19.3 50.8 292.7 83.6 126 14 26.347 19.5 50.8 292.7 85.1 127 14 26.347 19.5 50.8 294.5 84.2 128 14 26.250 19.5 50.8 294.5 84.3 Std Dev 1.435 1.0 11.4 7.5 2.1 Maximum 26.679 19.7 51.0 310.9 88.8 Minimum 22.468 17.0 2.9 279.9 80.0	120	14	25,962	18.9	50.8	285.1	81.5
122 14 26.132 19.7 50.9 296.9 84.8 123 14 26.380 19.4 50.7 299.6 85.6 124 14 26.540 19.5 50.7 298.1 85.2 125 14 26.230 19.4 50.9 299.7 85.6 126 14 26.361 19.3 50.8 292.7 83.6 127 14 26.347 19.5 50.8 297.7 85.1 128 14 26.250 19.5 50.8 294.5 84.2 Average 25.285 18.8 47.3 295.1 84.3 Std Dev 1.435 1.0 11.4 7.5 2.1 Maximum 26.679 19.7 51.0 310.9 88.8 Minimum 22.468 17.0 2.9 279.9 80.0	121	14	26.141	19.5	50.8	294.7	84.2
123 14 26.380 19.4 50.7 299.6 85.6 124 14 26.540 19.5 50.7 298.1 85.2 125 14 26.230 19.4 50.9 299.7 85.6 126 14 26.361 19.3 50.8 292.7 83.6 127 14 26.347 19.5 50.8 297.7 85.1 128 14 26.250 19.5 50.8 294.5 84.2 Average 25.285 18.8 47.3 295.1 84.3 Std Dev 1.435 1.0 11.4 7.5 2.1 Maximum 26.679 19.7 51.0 310.9 88.8 Minimum 22.468 17.0 2.9 279.9 80.0	122	14	26.132	19.7	50.9	296.9	84.8
124 14 26.540 19.5 50.7 298.1 85.2 125 14 26.230 19.4 50.9 299.7 85.6 126 14 26.361 19.3 50.8 292.7 83.6 127 14 26.347 19.5 50.8 297.7 85.1 128 14 26.250 19.5 50.8 294.5 84.2 Average 25.285 18.8 47.3 295.1 84.3 Std Dev 1.435 1.0 11.4 7.5 2.1 Maximum 26.679 19.7 51.0 310.9 88.8 Minimum 22.468 17.0 2.9 279.9 80.0	123	14	26.380	19.4	50.7	299.6	85.6
125 14 26.230 19.4 50.9 299.7 85.6 126 14 26.361 19.3 50.8 292.7 83.6 127 14 26.347 19.5 50.8 297.7 85.1 128 14 26.250 19.5 50.8 294.5 84.2 Average 25.285 18.8 47.3 295.1 84.3 Std Dev 1.435 1.0 11.4 7.5 2.1 Maximum 26.679 19.7 51.0 310.9 88.8 Minimum 22.468 17.0 2.9 279.9 80.0	124	14	26.540	19.5	50.7	298.1	85.2
126 14 26.361 19.3 50.8 292.7 83.6 127 14 26.347 19.5 50.8 297.7 85.1 128 14 26.250 19.5 50.8 294.5 84.2 Average 25.285 18.8 47.3 295.1 84.3 Std Dev 1.435 1.0 11.4 7.5 2.1 Maximum 26.679 19.7 51.0 310.9 88.8 Minimum 22.468 17.0 2.9 279.9 80.0	125	14	26.230	19.4	50.9	299.7	85.6
127 14 26.347 19.5 50.8 297.7 85.1 128 14 26.250 19.5 50.8 294.5 84.2 Average 25.285 18.8 47.3 295.1 84.3 Std Dev 1.435 1.0 11.4 7.5 2.1 Maximum 26.679 19.7 51.0 310.9 88.8 Minimum 22.468 17.0 2.9 279.9 80.0	126	14	26.361	19.3	50.8	292.7	83.6
128 14 26.250 19.5 50.8 294.5 84.2 Average 25.285 18.8 47.3 295.1 84.3 Std Dev 1.435 1.0 11.4 7.5 2.1 Maximum 26.679 19.7 51.0 310.9 88.8 Minimum 22.468 17.0 2.9 279.9 80.0	127	14	26.347	19.5	50.8	297.7	85.1
Average 25.285 18.8 47.3 295.1 84.3 Std Dev 1.435 1.0 11.4 7.5 2.1 Maximum 26.679 19.7 51.0 310.9 88.8 Minimum 22.468 17.0 2.9 279.9 80.0	128	14	26.250	19.5	50.8	294.5	84.2
Std Dev 1.435 1.0 11.4 7.5 2.1 Maximum 26.679 19.7 51.0 310.9 88.8 Minimum 22.468 17.0 2.9 279.9 80.0		Average	25.285	18.8	47.3	295.1	84.3
Maximum26.67919.751.0310.988.8Minimum22.46817.02.9279.980.0		Std Dev	1.435	1.0	11.4	7.5	2.1
Minimum 22.468 17.0 2.9 279.9 80.0		Maximum	26.679	19.7	51.0	310.9	88.8
		Minimum	22.468	17.0	2.9	279.9	80.0

N-value: 20

Pile Dynamics, Inc. SPT Analyzer Results Page 6 of 8 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Sample Interval Time: 255.19 seconds.

Page 7 of 8 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

TTL45b 619 NM		b 3_1
NM		Test date: 8/3/2018
AR: 1.17	in^2	SP: 0.492 k/ft3
LE: 18.63	ft	EM: 30000 ksi
WS: 16807.9	ft/s	

F@1863 ft (50.000 kips V@1863 ft (23.9 ft/s))	Depth: (13.50 - 14.	50 ft], displaying B	N: 149		A2,4 F1,3
Т5: 200 р. С.			****			
BL#	BC	FMX	VMX	BPM	FFV	FTR
	/6"	kips	ft/s	bpm	ft-lb	(%)
129	14	26.306	19.6	50.7	293.3	83.8
130	14	26.326	19.3	50.7	297.3	85.0
131	14	26.028	17.6	50.8	305.9	87.4
132	14	26.243	18.0	50.9	308.2	88.0
133	14	26.241	19.0	50.7	297.5	85.0
134	14	26.265	17.9	50.9	301.1	86.0
135	14	26.016	19.2	50.7	295.1	84.3
136	14	26.120	17.6	50.9	303.4	86.7
137	14	26.086	19.2	50.7	297.6	85.0
138	14	25.911	18.9	50.9	286.2	81.8
139	14	25.764	18.6	50.9	286.1	81.7
140	14	26.048	19.0	50.6	288.2	82.3
141	14	25.713	18.4	50.8	282.7	80.8
142	14	25.680	18.9	50.7	279.2	79.8
143	9	25.859	18.8	50.8	288.4	82.4
144	9	25.728	18.5	50.7	291.6	83.3
145	9	25.860	18.4	50.7	289.4	82.7
146	9	25.779	18.3	50.8	288.7	82.5
147	9	25.956	18.5	50.5	292.5	83.6
148	9	26.031	18.6	51.1	297.3	84.9
149	9	26.078	18.8	50.4	298.9	85.4
150	9	25.960	18.8	51.1	290.9	83.1
151	9	26.047	18.7	50.6	292.1	83.5
	Average	26.002	18.6	50.8	293.5	83.9
	Std Dev	0.191	0.5	0.2	7.1	2.0
	Maximum	26.326	19.6	51.1	308.2	88.0
	Minimum	25.680	17.6	50.4	279.2	79.8
		N-N	alue: 23			

Sample Interval Time: 25.99 seconds.

Pile Dynamics, Inc. SPT Analyzer Results Page 8 of 8 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Summary of SPT Test Results

Project TTL45b 619, Tes	t Date: 8/3/2018							
FMX Maximum Force VMX Maximum Velocity						E	FV. Maximum Energ TR: Energy Transfer	ly Ratio - Rated
BPM Blows/Minute								
Instr.	Blows	N	N60	Average	Average	Average	Average	Average
Length	Applied	Value	Value	FMX	VMX	BPM	EFV	ETR
ft	/6"		564442565	kips	ft/s	bpm	ft-lb	(%)
8.63	8-14	14	19	25.671	19.5	50.5	296.4	84.7
13.63	11-8-9	17	23	23.918	19.9	47.2	284.1	81.2
13.63	5-3	3	4	23,466	20.9	50.7	288.6	82.5
18.63	10-6-14	20	27	25.285	18.8	47.3	295.1	84.3
18,63	14-9	9	12	26.002	18.6	50.8	293.5	83.9
		Overall Ave	rage Values:	25.143	19.3	49.3	292.4	83.5
		Standa	rd Deviation:	1.244	1.0	7.4	8.0	2.3
		Overall Max	imum Value:	26.679	22.2	51.1	312.9	89.4
		Overall Min	imum Value:	20,581	17.0	2.9	276.9	79.1

TTL- CME 550X (SN 371903)

Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110

Record of Standard Penetration Test Energy Calibration

For

TTL Central Mine Equipment 550X Serial # 371903

Date of Calibration: August 3, 2018

Documentation:

Page 2 – Calibration Certificate Pages 3 to 4 – Field Sheets Pages 5 to 11 – PDAS Reports

	(2.1.2								Т	T	٦	1					
	ETR Standard Deviation (From PDA-S)	5.1	2.4	3.6	4.3	0.6	4.4			%	N/	ge ETR % oduce poor		tple depth			%
	^c Energy Transfer Ratio (%) (Average ETR)	87.9%	93.5%	94.7%	84.6%	89.0%	92.3%			92.19	1.4/	Overall Avera ertain blows pro		rgy for each sam	rtall average ETR.		1.15
	^b Average Measured Energy (Average (ft-lbs)	307.7	327.3	331.3	296.1	311.5	322.9			322.2	Canton	In some cases, c ooring logs.		e Measured Ene		t of Variation	0V: 4
	swold fo. of Blows Analyzed (From PDA-S)	Π	25	15	3	3	7			red Enerov.	i cu bilci gy.	ved N-value. shown on the l	cet).	nd the Average		verall Coefficien	atio (ETR) C
	SPT Blow Count (blows per six inches) (From Boring Log)	7-5-5	8 - 12 - 13	6-7-7	3 - 1 - 2	1-2-2	2 - 3 - 4			d Average Measu	AVCIAGE MICASU	elates to the obserr ETR than what is s	alyzer. ammer falling 2.5 f	idoff. alyzed (last 1 ft) a	dividing by the ov	Statistical Analysis - O	^e Energy Transfer R
Alabama st	(1997) Atg9D olqms2	3.5 - 5.0	8.5 - 10.0	13.5 - 15.0	18.5 - 20.0	23.5 - 25.0	28.5 - 30.0					lriving, which r evalutated for	by the SPT An s (140 pound he	bles due to rour mmer blows an	th (c) and then		
uscaloosa a County, <i>1</i> . Office Te	≈ Drill Rod Length (ft) (LE)	8.63	13.63	18.63	23.63	28.63	30.63				al 1 ft of d less blows v recorded oot-pounds	JIPLOT tal mber of ha	umber of h				
T Tuscaloos TTI	А чегаде На ттег (МЧВ) ЭлеЯ поізегоО	55.9	55.6	55.5	55.4	55	55.1					uring the fir ay result in	or each blov rev of 350 f	se in the PDI ge of the num	ge of the nu e ETR per :		
	Drill Rod Size	ſ-MV									r impacts di gy. This m	04633-10, fa al SPT ener	ly from tho hted averag	the averag			
	Date Tested					8/3/2018					ed for hammer Aeasured Energ	ed in ASTM D	d insignificant aking the weig	d deviation for the standard		8/03/2018	
	Boring No. Tested					Test 1						d and report e Average N	od, as outlin gy divided b	slightly and ulated by ta all standard	erall standar I to determin		Date:
	Rig Operator	R.Bell R.Bell ling are average d to calculate th the EFV metho Measured Energ alues may differ					values may differ ed Energy is cal	dculating the ove xcel was utilized		NRM							
	Rig Owner					TTL						for SPT samp were not use	gy is based o r Ratio is the	V and ETR v erage Measur	rmined by ca totion from E		ared By:
	Automatic Hammer Serial Number and Rig Serial Nudel	Te june			Serial No.	371903	CME 550X					^a Energy results 1 quality data and	^b Mcasured Ener, ^e Energy Transfe	The average EF ^d The overall Average tested.	"ETR COV dete The STDEV fun		Calibration Prep

Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery. Alabama 36110

DCN: 01

Page 1

Alabama Department of Transportation **BUREAU OF MATERIALS & TESTS** 3700 Fairground Road Montgomery, Alabama 36110

RECORD OF SPT ENERGY MEASUREMENTS

Project Name:	1TL	Rig Make / Model:	CMESSOX
Location:	TTLoffice	Rig I.D.:	
Date:	8-3-18	Hammer Serial No.:	371903
SPT Inspector:	N. Maxwell	Hammer Type:	Auto
Drilling Company:	TTC	Rod Size:	AWT

Boring Identification:	Test 1 bl
Geologic Region:	74500 6050
Time Tested:	7:30 AM
Drill Rig Operator:	R Bell
SPT Analyzer Serial Number:	4500 TB
Instrumented Rod Type / Area:	1,17 142
Accelerometer Serial Number:	A1: £5260 A2: £5259
Accelerometer Calibration Factor:	A1: 314.0 A2: 328.0
Strain Gage Serial Number:	A1: 4 53AWJ-1 A2: 453AWJ-2
Strain Gage Calibration Factors:	A1: 206.42 A2: 206.54

Analyzer File Name (Boring No. plus Sub designation)	Rod Length (FT) 34	Measured S.U. (FT)	Calculated Start Depth (FT)	Hammer Blow Counts (Provided By Others)	Increment	Misc. Comments
611	2,83+0.8		0.0 '	3	6in	2
	3-63+2			1	12in	
	5.63		(0.0 -1.5)	2	18in	OMIT
p1 -	3.63+5		3,5	7	6in	
1 - 1	010			5	12in	
	0,65		(3.5-5.0)	5	18in	
bl -	3.63+18		8.5	5	6in	
1 - 3	12 10			1.2	12in	
·····	11.63		(8.5-10.0)	1 3	18in	
W 112 35	3.63+15		13.5	6	6in	
61 _ 4	19. 67	$b \geq 0$		7	12in	
	~,~)	17.7	(13.5-15.0)	7	18in	
	20.0+3.67		18,5	3	6in	
61 _ 5	23 13	19.5		/	12in	
	1.0)		(18.5-20.0)	2	18in	
1 1	2.5.0+3.63		23.5		6in	
016				2	12in	
	28.63		(23.9-25.0)	2	18in	

*Rod Length: Total From Gages to Tip of Sampler *Measured S.U.: Measured Drill Rod Stick Up From Ground Surface To Location of Gages DCN:01

Instrument Subassembly Length:____2ft____

fage Z

Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110

RECORD OF SPT ENERGY MEASUREMENTS

Project Name:	<u>ttl</u>	Rig Make / Model:	CMESSOX
Location:	TTL office	Rig I.D.:	
Date:	8-3-18	Hammer Serial No.:	311903
SPT Inspector:	N. Maxwell	Hammer Type:	Auto
Drilling Company:	TTL	Rod Size:	AWS

Boring Identification:	test bl
Geologic Region:	Tustalno Se
Time Tested:	R Boll
Drill Rig Operator:	1110
SPT Analyzer Serial Number:	4500 TB
Instrumented Rod Type / Area:	1.17
Accelerometer Serial Number:	A1: K5260 A2: K5259
Accelerometer Calibration Factor:	A1: 314,0 A2: 328,0
Strain Gage Serial Number:	A1: 453AWJ-1 A2: 453AVJ-2
Strain Gage Calibration Factors:	A1: 206.42 A2: 206.54

Analyzer File Name (Boring No. plus Sub designation)	Rod Length (FT)	Measured S.U. (FT)	Calculated Start Depth (FT)	Hammer Blow Counts (Provided By Others)	Increment	Misc. Comments
bi X	3.63+30.9		28.5	2	6in	-7. de 64
-9	27/23		7	3	12in	
- <i>O</i>	30.62		(28.5-30.0)	4	18in	
					6in	
					12in	
			()		18in	
					6in	
					12in	
			()		18in	
					6in	
					12in	
			()		18in	
					6in	
					12in	
			()		18in	
					6in	
					12in	
			(18in	

*Rod Length: Total From Gages to Tip of Sampler *Measured S.U.: Measured Drill Rod Stick Up From Ground Surface To Location of Gages DCN:01

Instrument Subassembly Length:____2ft____

Page 1 of 7 PDA-S Ver. 2015.14 - Printed: 8/6/2018

ttlcme550 NM		b1_2
NM		Test date: 8/3/2018
AR: 1.17	in^2	SP: 0.492 k/ft3
LE: 8.63	ft	EM: 30000 ksi
WS: 16807.	9 ft/s	

Pile Dynamics, Inc. SPT Analyzer Results

FMX: Maximum Force	r.	EFV: Maximum Energy				
VMX: Maximum Veloc BPM: Blows/Minute	ity			ETR:	Energy Transfer R	atio - Rated
BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	(%)
7	5	23.023	19.4	56.5	283.8	81.1
8	5	23.660	19.4	55.7	314.3	89.8
9	5	23.341	19.6	55.9	292.5	83.6
10	5	23.361	19.5	55.6	294.1	84.0
11	5	23.629	19.9	55.8	339.8	97.1
12	6	23.271	19.8	55.9	295.3	84.4
13	6	23.612	20.0	55.7	299.3	85.5
14	6	22.950	19.3	55.5	295.4	84.4
15	6	24.121	19.9	56.8	310.2	88.6
16	6	24.752	20.4	55.0	325.8	93.1
17	6	24.159	20.0	56.1	334.2	95.5
	Average	23.625	19.7	55.9	307.7	87.9
	Std Dev	0.513	0.3	0.5	17.8	5.1
	Maximum	24.752	20.4	56.8	339.8	97.1
	Minimum	22.950	19.3	55.0	283.8	81.1
		N-1	value: 11			

Sample Interval Time: 10.81 seconds.

Page 2 of 7 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

ttlcm	e550		b1_2
NM			Test date: 8/3/2018
AR:	1.17	in^2	SP: 0.492 k/ft3
LE:	13.63	ft	EM: 30000 ksi
WS:	16807.9	ft/s	

		Depth: (8.50 - 9.5	50 ft], displaying BN:	48		
F@13 63 ft (50.000 kips) V@13 63 ft (23.9 ft/s) -)					A2.4 F1,3
TS: 20 TB: 0						
BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	(%)
26	12	24,722	19.4	56.4	336.6	96.2
27	12	25.638	20.4	55.6	319.9	91.4
28	12	24.899	20.1	56.1	328.2	93.8
29	12	25.470	20.1	55.1	328.6	93.9
30	12	25.457	20.3	55.8	340.9	97.4
31	12	25.024	20.1	55.6	333.4	95.3
32	12	24.366	19.6	55.7	320.7	91.6
33	12	25.468	20.1	55.9	325.0	92.9
34	12	26.229	20.5	55.8	335.3	95.8
35	12	25.125	20.2	55.6	325.6	93.0
36	12	25.180	19.9	54.9	331.0	94.6
37	12	24.456	19.9	55.9	316.7	90.5
38	13	25.055	20.3	55.8	337.0	90.5
39	13	24.979	20.0	55.4 EE 4	340.1	90.9
40	13	24.337	19.0	55.4	315.9	90.3
42	13	24.550	10.0	55.0	329.0	94.0
42	13	25 185	20.3	55.6	327.8	93.7
40	13	24 678	19.8	55.7	324.8	92.8
45	13	24 743	19.5	55.7	320.9	91.7
46	13	24.835	19.8	56.2	337.1	96.3
47	13	24,511	19.8	55.1	325.6	93.0
48	13	24,289	19.7	55.4	316.9	90.6
49	13	24.473	20.0	55.5	323.4	92.4
50	13	23.809	19.2	55.0	309.5	88.4
and the second s	Average	24.899	19.9	55.6	327.3	93.5
	Std Dev	0.507	0.3	0.4	8.5	2.4
	Maximum	26.229	20.5	56.4	346.1	98.9
	Minimum	23.809	19.2	54.9	309.5	88.4

N-value: 25

Sample Interval Time: 25.94 seconds.

Page 3 of 7 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

ttlcme5	550	b1_2
NM		Test date: 8/3/2018
AR: 1.	.17 in^2	SP: 0.492 k/ft3
LE: 18	8.63 ft	EM: 30000 ksi
WS: 16	6807.9 ft/s	

N-value: 15

Sample Interval Time: 15.16 seconds.

Page 4 of 7 PDA-S Ver. 2015.14 - Printed: 8/6/2018 SPT Analyzer Results ttlcme550 b1_2 NM Test date: 8/3/2018 AR: 1.17 in^2 SP: 0.492 k/ft3 LE: 23.63 ft EM: 30000 ksi WS: 16807.9 ft/s

Sample Interval Time: 2.17 seconds.

Pile Dynamics, Inc.

Page 5 of 7 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

ttlcme550 NM	b1_2 Test date: 8/3/2018
AR: 1,17 in^2	SP: 0.492 k/ft3
LE: 28.63 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

Sample Interval Time: 2.18 seconds.

Page 6 of 7 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Pile Dynamics, Inc. SPT Analyzer Results

ttlcme550		b1_2
NM		Test date: 8/3/2018
AR: 1.17	in^2	SP: 0.492 k/ft3
LE: 30.63	ft	EM: 30000 ksi
WS: 16807.9	ft/s	

Sample Interval Time: 6.52 seconds.

Pile Dynamics, Inc. SPT Analyzer Results

Page 7 of 7 PDA-S Ver. 2015.14 - Printed: 8/6/2018

Summary of SPT Test Results

Project: ttlcme550, Test Da	ite: 8/3/2018							
FMX: Maximum Force						E	V: Maximum Energ	×
VMX: Maximum Velocity BPM: Blows/Minute						Ξ	FR: Energy Transfer	Ratio - Rated
Instr.	Blows	Z	NGO	Average	Average	Average	Average	Average
Length	Applied	Value	Value	FMX	VMX	BPM	EFV	ETR
ų	/6"			kips	ft/s	ррт	ft-lb	(%)
8.63	5-6	9	თ	23.625	19.7	55.9	307.7	87.9
13.63	12-13	13	19	24.899	19.9	55.6	327.3	93.5
18.63	7-8	80	12	24.427	19.5	55.5	331.3	94.7
23.63	2-1	T	-	23.846	19.5	55.4	296.1	84.6
28.63	0-3	e	4	25.344	20.0	55.0	311.5	89.0
30.63	1-6	Q	a	26.591	18.2	55.1	322.9	92.3
		Overall Aver	age Values:	24.726	19.6	55.5	322.2	92.1
		Standard	I Deviation:	0.939	0.6	0.5	16.1	4.6
		Overall Maxir	num Value:	27.009	20.5	56.8	349.7	99.9
		Overall Minir	num Value:	22.950	17.8	54.4	283.8	81.1

IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL ENGINEERING REPORT

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. Active involvement in the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client. *Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled.* No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. *And no one – not even you – should apply this report for any purpose or project except the one originally contemplated.*

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full*.

You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.*

This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be*, and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.
This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, *they are not final*, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmationdependent recommendations if you fail to retain that engineer to perform construction observation*.

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note conspicuously that you've included the material for informational purposes only.* To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, *only* from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnicalengineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, *do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.*

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration*. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. *Geotechnical engineers are not buildingenvelope or mold specialists*.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent